Advertisement

Corn pericarp pretreated with dilute acid: bioconversion of sugars in the liquid fraction to ethanol and studies on enzymatic hydrolysis of the solid fraction

  • J.A. Granados-Arvizu
  • D.V. Melo-Sabogal
  • A. Amaro-Reyes
  • J.N. Gracida-Rodríguez
  • B.E. García-Almendárez
  • E. Castaño-Tostado
  • C. Regalado-GonzálezEmail author
Original Article
  • 6 Downloads

Abstract

Corn pericarp (CP) results from wet milling of the corn industry. It is an abundant agro-industrial byproduct in Mexico, with potential use as sugars source to obtain ethanol and other economically relevant chemicals. In this work, CP was pretreated with dilute sulfuric acid at 121 °C; using a 23 full factorial design, factors were sulfuric acid, reaction time, and CP concentration. After pretreatment, the capacity of activated charcoal to remove inhibitory compounds in the liquid fraction was studied. Then, the detoxified liquid fraction was fermented using Scheffersomyces stipitis, whereas the solid fraction was exposed to enzymatic hydrolysis by a commercial cellulase (Cellic® CTec2). The most promising pretreatments utilized 2% (v/v) sulfuric acid, 20% (w/v) of CP, and 30 min reaction time producing 109.38 ± 6.73 g/L reducing sugars. The solid fraction obtained from CP pretreatment resulted in cellulose conversion up to 85.60% ± 1.87% after 94 h, significantly higher than conversion achieved using untreated CP of 32.54% ± 5.58%. The detoxification process allowed yeast fermentation to reach ethanol yields (g ethanol/g consumed substrate) between 0.09 ± 0.02 and 0.29 ± 0.006. S. stipitis was able to produce between 4.62 ± 1.73 and 14.22 ± 0.98 g/L of ethanol from the hydrolyzed liquid fraction. The dilute acid pretreatment on CP produced a solid fraction, which upon enzymatic treatment caused high cellulose conversion into reducing sugars. Additionally, the fermentability of the sugars present in the liquid fraction was increased after the detoxification process. Thus, CP is a material that shows good potential to obtain value-added products such as ethanol.

Keywords

Bioethanol Scheffersomyces stipitis Detoxification Activated charcoal 

Notes

Acknowledgments

We are grateful to Novozymes for supplying the sample of Cellic Ctec2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13399_2019_534_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 32 kb)

References

  1. 1.
    Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27.  https://doi.org/10.1016/j.renene.2011.06.045 CrossRefGoogle Scholar
  2. 2.
    Hsu T-C, Guo G-L, Chen W-H, Hwang W-S (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913.  https://doi.org/10.1016/j.biortech.2009.10.009 CrossRefGoogle Scholar
  3. 3.
    Van Eylen D, van Dongen F, Kabel M, de Bont J (2011) Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment. Bioresour Technol 102:5995–6004.  https://doi.org/10.1016/j.biortech.2011.02.049 CrossRefGoogle Scholar
  4. 4.
    Yoshida T, Sakamoto M, Azuma J (2012) Extraction of hemicelluloses from corn pericarp by the NaOH-Urea Solvent System. Procedia Chem 4:294–300.  https://doi.org/10.1016/j.proche.2012.06.041 CrossRefGoogle Scholar
  5. 5.
    Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753.  https://doi.org/10.1016/j.biortech.2009.11.080 CrossRefGoogle Scholar
  6. 6.
    Díaz-Malváez FI, García-Almendárez BE, Hernández-Arana A et al (2013) Isolation and properties of β-xylosidase from Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process Biochem 48:1018–1024.  https://doi.org/10.1016/j.procbio.2013.05.003 CrossRefGoogle Scholar
  7. 7.
    Akin DE, Rigsby LL (2008) Corn fiber: structure, composition, and response to enzymes for fermentable sugars and coproducts. Appl Biochem Biotechnol 144:59–68.  https://doi.org/10.1007/s12010-007-0053-0 CrossRefGoogle Scholar
  8. 8.
    Kálmán G, Recseg K, Gáspár M, Réczey K (2006) Novel approach of corn fiber utilization. Appl Biochem Biotechnol 131:738–750.  https://doi.org/10.1385/ABAB:131:1:738 CrossRefGoogle Scholar
  9. 9.
    Gáspár M, Kálmán G, Réczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42:1135–1139.  https://doi.org/10.1016/j.procbio.2007.04.003 CrossRefGoogle Scholar
  10. 10.
    Noureddini H, Byun J (2010) Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresour Technol 101:1060–1067.  https://doi.org/10.1016/j.biortech.2009.08.094 CrossRefGoogle Scholar
  11. 11.
    Kim D, Orrego D, Ximenes EA, Ladisch MR (2017) Cellulose conversion of corn pericarp without pretreatment. Bioresour Technol 245:511–517.  https://doi.org/10.1016/j.biortech.2017.08.156 CrossRefGoogle Scholar
  12. 12.
    Buhner J, Agblevor FA (2004) Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotechnol 119:13–30.  https://doi.org/10.1385/ABAB:119:1:13 CrossRefGoogle Scholar
  13. 13.
    Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431.  https://doi.org/10.1007/s13205-013-0167-8 CrossRefGoogle Scholar
  14. 14.
    Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Mol J Synth Chem Nat Prod Chem 23.  https://doi.org/10.3390/molecules23020309 CrossRefGoogle Scholar
  15. 15.
    Deng F, Cheong D-Y, Aita GM (2018) Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Ind Crop Prod 115:166–173.  https://doi.org/10.1016/j.indcrop.2018.02.030 CrossRefGoogle Scholar
  16. 16.
    Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227.  https://doi.org/10.1016/j.biortech.2013.09.138 CrossRefGoogle Scholar
  17. 17.
    Lee JM, Venditti RA, Jameel H, Kenealy WR (2011) Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 35:626–636.  https://doi.org/10.1016/j.biombioe.2010.10.021 CrossRefGoogle Scholar
  18. 18.
    Granados-Arvizu JÁ, Amaro-Reyes A, García-Almendárez BE et al (2017) Optimization of dilute acid pretreatment of corn pericarp by response surface methodology. BioResources 12:7955–7963.  https://doi.org/10.15376/biores.12.4.7955-7963 CrossRefGoogle Scholar
  19. 19.
    Vogel KP, Pedersen JF, Masterson SD, Toy JJ (1999) Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39:276.  https://doi.org/10.2135/cropsci1999.0011183X003900010042x CrossRefGoogle Scholar
  20. 20.
    Wood IP, Elliston A, Ryden P et al (2012) Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121.  https://doi.org/10.1016/j.biombioe.2012.05.003 CrossRefGoogle Scholar
  21. 21.
    Kuhad RC, Gupta R, Khasa YP et al (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev 15:4950–4962.  https://doi.org/10.1016/j.rser.2011.07.058 CrossRefGoogle Scholar
  22. 22.
    Avci A, Saha BC, Dien BS, Kennedy GJ, Cotta MA (2013) Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresour Technol 130:603–612.  https://doi.org/10.1016/j.biortech.2012.12.104 CrossRefGoogle Scholar
  23. 23.
    Günan Yücel H, Aksu Z (2015) Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799.  https://doi.org/10.1016/j.fuel.2015.06.016 CrossRefGoogle Scholar
  24. 24.
    Díaz MJ, Ruiz E, Romero I, Cara C, Moya M, Castro E (2009) Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol Biotechnol 25:891–899.  https://doi.org/10.1007/s11274-009-9966-9 CrossRefGoogle Scholar
  25. 25.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33.  https://doi.org/10.1016/S0960-8524(99)00161-3CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Xia C, Lu M, Tu M (2018) Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnol Biofuels 11:178.  https://doi.org/10.1186/s13068-018-1182-0 CrossRefGoogle Scholar
  27. 27.
    Lee SC, Park S (2016) Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods. Bioresour Technol 216:661–668.  https://doi.org/10.1016/j.biortech.2016.06.007 CrossRefGoogle Scholar
  28. 28.
    Mateo S, Roberto IC, Sánchez S, Moya AJ (2013) Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod 49:196–203.  https://doi.org/10.1016/j.indcrop.2013.04.046 CrossRefGoogle Scholar
  29. 29.
    Miyafuji H, Danner H, Neureiter M et al (2003) Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzym Microb Technol 32:396–400.  https://doi.org/10.1016/S0141-0229(02)00308-3 CrossRefGoogle Scholar
  30. 30.
    Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286.  https://doi.org/10.1016/j.apenergy.2013.07.036 CrossRefGoogle Scholar
  31. 31.
    Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869.  https://doi.org/10.1016/j.biortech.2016.06.018 CrossRefGoogle Scholar
  32. 32.
    Auxenfans T, Crônier D, Chabbert B, Paës G (2017) Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol Biofuels 10:36.  https://doi.org/10.1186/s13068-017-0718-z CrossRefGoogle Scholar
  33. 33.
    Bellido C, Bolado S, Coca M, Lucas S, González-Benito G, García-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–10874.  https://doi.org/10.1016/j.biortech.2011.08.128 CrossRefGoogle Scholar
  34. 34.
    Brito PL, de Azevedo Ferreira CM, Silva AFF et al (2018) Hydrolysis, detoxification and alcoholic fermentation of hemicellulose fraction from palm press fiber. Waste Biomass Valori 9:957–968.  https://doi.org/10.1007/s12649-017-9882-4 CrossRefGoogle Scholar
  35. 35.
    Cekmecelioglu D, Demirci A (2018) A statistical optimization study on dilute sulfuric acid pretreatment of distillers dried grains with solubles (DDGS) as a potential feedstock for fermentation applications. Waste Biomass Valorization 10:3243–3249.  https://doi.org/10.1007/s12649-018-0376-9 CrossRefGoogle Scholar
  36. 36.
    Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102:10915–10921.  https://doi.org/10.1016/j.biortech.2011.09.066 CrossRefGoogle Scholar
  37. 37.
    Gonzales RR, Sivagurunathan P, Kim S-H (2016) Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. Int J Hydrog Energy 41:21678–21684.  https://doi.org/10.1016/j.ijhydene.2016.06.198 CrossRefGoogle Scholar
  38. 38.
    Jung YH, Kim KH (2015) Chapter 3 - acidic pretreatment. In: Larroche APNB (ed) Pretreatment of biomass. Elsevier, Amsterdam, pp 27–50CrossRefGoogle Scholar
  39. 39.
    Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77.  https://doi.org/10.1385/ABAB:76:2:65 CrossRefGoogle Scholar
  40. 40.
    Gonçalves FA, Ruiz HA, Silvino dos Santos E et al (2016) Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy 94:353–365.  https://doi.org/10.1016/j.renene.2016.03.045 CrossRefGoogle Scholar
  41. 41.
    Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, Gueguim Kana EB (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresour Technol 286:121403.  https://doi.org/10.1016/j.biortech.2019.121403 CrossRefGoogle Scholar
  42. 42.
    Su Y-K, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112:457–469.  https://doi.org/10.1002/bit.25445 CrossRefGoogle Scholar
  43. 43.
    Arslan Y, Eken-Saraçoğlu N (2010) Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresour Technol 101:8664–8670.  https://doi.org/10.1016/j.biortech.2010.05.085 CrossRefGoogle Scholar
  44. 44.
    Bonan CIDG, Biazi LE, Santos SC, Soares LB, Dionísio SR, Hoffmam ZB, Costa AC, Ienczak JL (2019) Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnol Lett 41:753–761.  https://doi.org/10.1007/s10529-019-02674-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J.A. Granados-Arvizu
    • 1
  • D.V. Melo-Sabogal
    • 1
  • A. Amaro-Reyes
    • 1
  • J.N. Gracida-Rodríguez
    • 1
  • B.E. García-Almendárez
    • 1
  • E. Castaño-Tostado
    • 1
  • C. Regalado-González
    • 1
    Email author
  1. 1.DIPA, PROPACFacultad de Química, Universidad Autónoma de QuéretaroQuerétaroMéxico

Personalised recommendations