Advertisement

Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system

  • Gomaa A. M. Ali
  • S. Supriya
  • Kwok Feng Chong
  • Essam R. Shaaban
  • H. Algarni
  • T. Maiyalagan
  • Gurumurthy HegdeEmail author
Original Article
  • 53 Downloads

Abstract

Mesoporous carbon nanospheres are produced from biowaste, Allium cepa peels, well known as “onion” dry peels using the catalyst-free pyrolysis method. The synthesis process involves an unusable bio-precursor that is accumulated in millions of tons per year. The obtained materials show nanosphere morphology with particles size of 63–66 nm and surface area up to 2962 m2 g−1. After pyrolysis at 800, 900, and 1000 °C, the carbon nanospheres are directly applied for supercapacitance study without further activation processes. The electrochemical studies show promising results such as high electrode capacitance of 189.4 at 0.1 A g−1 in 3 M KOH. Moreover, full cell symmetrical supercapacitor is fabricated and further investigated under a wide potential window up to 1.6 V. An excellent electrochemical behavior is observed for the supercapacitor in terms of high energy density of 22.1 Wh kg−1 at a power density of 39.6 W kg−1, high cyclic stability of 78%, and high coulombic efficiency of 90% over 4500 cycles at 0.5 A g−1. These studies support carbon nanospheres obtained from Allium cepa wastes to be used as promising materials for supercapacitor application.

Graphical abstract

Keywords

Supercapacitor Onion peel Agricultural waste Carbon nanospheres Specific capacitance 

Notes

Acknowledgments

Dr. Gurumurthy Hegde would like to thank the Department of Science and Technology, Nanomission Division, Government of India, for providing the project grant (file number: SR/NM/NT-1026/2017). The authors thank Mr. Sriram Ganesan and Dr. Mahaveer Kurkure, Jain University, Bengaluru, India, for providing BET data and Dr. Kavitha, BMS Institute of Technology, for providing Raman spectroscopic data. In addition, the authors would like to acknowledge the funding from the Ministry of Education Malaysia FRGS (RDU160118: FRGS/1/2016/STG07/UMP/02/3) and Universiti Malaysia Pahang (grant number RDU170357). Moreover, the authors extend their appreciation to King Khalid University, the Ministry of Education in Saudi Arabia for supporting this research through a grant (RCAMS/KKU/002-18) under research center for advanced material science.

Supplementary material

13399_2019_520_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 38 kb)

References

  1. 1.
    Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74CrossRefGoogle Scholar
  2. 2.
    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1300816CrossRefGoogle Scholar
  3. 3.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  4. 4.
    Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRefGoogle Scholar
  5. 5.
    Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651CrossRefGoogle Scholar
  6. 6.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730CrossRefGoogle Scholar
  7. 7.
    Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRefGoogle Scholar
  8. 8.
    Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044CrossRefGoogle Scholar
  9. 9.
    Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313CrossRefGoogle Scholar
  10. 10.
    Yuan C, Gao B, Shen L, Yang S, Hao L, Lu X, Zhang F, Zhang L, Zhang X (2011) Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3(2):529–545CrossRefGoogle Scholar
  11. 11.
    Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRefGoogle Scholar
  12. 12.
    Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater SciGoogle Scholar
  13. 13.
    Supriya S, Shetti VS, Hegde G (2018) Conjugated system of porphyrin-carbon nano allotropes: a review. New J ChemGoogle Scholar
  14. 14.
    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53CrossRefGoogle Scholar
  15. 15.
    Chen T, Dai L (2013) Carbon nanomaterials for high–performance supercapacitors. Mater Today 16(7–8):272–280CrossRefGoogle Scholar
  16. 16.
    Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43Google Scholar
  17. 17.
    Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRefGoogle Scholar
  18. 18.
    Teo EYL, Muniandy L, Ng E-P, Adam F, Mohamed AR, Jose R, Chong KF (2016) High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta 192:110–119CrossRefGoogle Scholar
  19. 19.
    Wang H, Li Z, Tak JK, Holt CM, Tan X, Xu Z, Amirkhiz BS, Harfield D, Anyia A, Stephenson T (2013) Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 57:317–328CrossRefGoogle Scholar
  20. 20.
    Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151CrossRefGoogle Scholar
  21. 21.
    Gao S, Li L, Geng K, Wei X, Zhang S (2015) Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy 16:408–418CrossRefGoogle Scholar
  22. 22.
    Yan L, Yu J, Houston J, Flores N, Luo H (2017) Biomass derived porous nitrogen doped carbon for electrochemical devices. Green Energy Environ 2(2):84–99CrossRefGoogle Scholar
  23. 23.
    Gao Z, Huang X, Kuiyong C, Wan C, Liu H (2017) Heteroatom-enhanced the formation of mesoporous carbon microspheres with high surface area as supercapacitor electrode materials. Int J Electrochem Sci 12(11):10687–10700CrossRefGoogle Scholar
  24. 24.
    Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18(14):1877–1882CrossRefGoogle Scholar
  25. 25.
    Shakambari G, Sameer Kumar R, Ashokkumar B, Varalakshmi P (2017) Agro waste utilization for cost-effective production of l-asparaginase by pseudomonas plecoglossicida RS1 with anticancer and acrylamide mitigation potential. ACS Omega 2(11):8108–8117CrossRefGoogle Scholar
  26. 26.
    Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Cools K, Terry LA, Esteban RM (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant foods Hum Nutr 66(1):48–57CrossRefGoogle Scholar
  27. 27.
    Aruni Abdul Manaf S, Hegde G, Kumar Mandal U, Tin Wui W, Roy P (2017) Functionalized carbon nano-scale drug delivery systems from biowaste sago bark for cancer cell imaging. Curr Drug Deliv 14(8):1071–1077Google Scholar
  28. 28.
    Yallappa S, Manaf SAA, Hegde G (2018) Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells. New Carbon Mater 33(2):162–172CrossRefGoogle Scholar
  29. 29.
    Yallappa S, Manaf SAA, Shiddiky MJ, Kim JH, Hossain M, Shahriar A, Malgras V, Yamauchi Y, Hegde G (2017) Synthesis of carbon nanospheres through carbonization of areca nut. J Nanosci Nanotechnol 17(4):2837–2842CrossRefGoogle Scholar
  30. 30.
    Yallappa S, Shivakumar M, Nagashree K, Dharmaprakash M, Vinu A, Hegde G (2018) Electrochemical determination of nitrite using catalyst free mesoporous carbon nanoparticles from bio renewable areca nut seeds. J Electrochem Soc 165(10):H614–H619CrossRefGoogle Scholar
  31. 31.
    Divyashree A, Manaf SAA, Yallappa S, Chaitra K, Kathyayini N, Hegde G (2016) Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach. J Energy Chem 25(5):880–887CrossRefGoogle Scholar
  32. 32.
    Carrott P, Carrott MR, Guerrero C, Delgado L (2008) Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. J Anal Appl Pyrolysis 82(2):264–271CrossRefGoogle Scholar
  33. 33.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235CrossRefGoogle Scholar
  34. 34.
    Akshaya K, Bhat VS, Varghese A, George L, Hegde G (2019) Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J Electrochem Soc 166(13):B1097–B1106CrossRefGoogle Scholar
  35. 35.
    Contreras E, Dominguez D, Tiznado H, Guerrero-Sanchez J, Takeuchi N, Alonso-Nunez G, Contreras OE, Oropeza-Guzmán MT, Romo-Herrera JM (2019) N-Doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2. Nanoscale 11(6):2829–2839CrossRefGoogle Scholar
  36. 36.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9-10):1051–1069CrossRefGoogle Scholar
  37. 37.
    Fouad OA, Makhlouf SA, Ali GAM, El-Sayed AY (2011) Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater Chem Phys 128(1):70–76CrossRefGoogle Scholar
  38. 38.
    Yu D, Ma Y, Chen M, Dong X (2019) KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors. J Colloid Interface Sci 537:569–578CrossRefGoogle Scholar
  39. 39.
    Zhang J, Gong L, Sun K, Jiang J, Zhang X (2012) Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem 16(6):2179–2186CrossRefGoogle Scholar
  40. 40.
    Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRefGoogle Scholar
  41. 41.
    Kumar A, Hegde G, Manaf SA, Ngaini Z, Sharma KV (2014) Catalyst free silica templated porous carbon nanoparticles from bio–waste materials. Chem Commun 50(84):12702–12705CrossRefGoogle Scholar
  42. 42.
    Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17(5):1241–1247CrossRefGoogle Scholar
  43. 43.
    Barzegar F, Momodu DY, Fashedemi OO, Bello A, Dangbegnon JK, Manyala N (2015) Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv 5(130):107482–107487CrossRefGoogle Scholar
  44. 44.
    Chen M, Zheng X, Ma Y, Dong X (2018) Oxygen-rich porous carbon sheets: facile one-step synthesis and enhanced electrochemical performance. Diam Relat Mater 85:89–97CrossRefGoogle Scholar
  45. 45.
    Si W, Wu X, Zhou J, Guo F, Zhuo S, Cui H, Xing W (2013) Reduced graphene oxide aerogel with high–rate supercapacitive performance in aqueous electrolytes. Nanoscale Res Lett 8(1):247–255CrossRefGoogle Scholar
  46. 46.
    Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2005) Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J Power Sources 144(1):302–309CrossRefGoogle Scholar
  47. 47.
    Ahmed S, Ahmed A, Rafat M (2018) Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes, Journal of Saudi Chemical SocietyGoogle Scholar
  48. 48.
    Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181CrossRefGoogle Scholar
  49. 49.
    Zequine C, Ranaweera CK, Wang Z, Dvornic PR, Kahol PK, Singh S, Tripathi P, Srivastava ON, Singh S, Gupta BK, Gupta G, Gupta RK (2017) High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci Rep 7:1174CrossRefGoogle Scholar
  50. 50.
    Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111(20):7527–7531CrossRefGoogle Scholar
  51. 51.
    Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRefGoogle Scholar
  52. 52.
    Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. Journal of Energy Chemistry 25(4):734–739CrossRefGoogle Scholar
  53. 53.
    Kant R, Kaur J, Singh MB (2014) Chapter 10 Nanoelectrochemistry in India, Electrochemistry. The Royal Society of Chemistry 12:336–378Google Scholar
  54. 54.
    Balathanigaimani M, Shim W-G, Lee M-J, Kim C, Lee J-W, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868–871CrossRefGoogle Scholar
  55. 55.
    Chen M, Yu D, Zheng X, Dong X (2019) Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J Energy Storage 21:105–112CrossRefGoogle Scholar
  56. 56.
    Zheng X, Chen M, Ma Y, Dong X, Xi F, Liu J (2017) Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. J Solid State Electrochem 21(12):3449–3458CrossRefGoogle Scholar
  57. 57.
    Ma Y, Chen M, Zheng X, Yu D, Dong X (2019) Synergetic effect of swelling and chemical blowing to develop peach gum derived nitrogen-doped porous carbon nanosheets for symmetric supercapacitors. J Taiwan Inst Chem Eng 101:24–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Chemistry Department, Faculty of ScienceAl–Azhar UniversityAssiutEgypt
  3. 3.Centre for Nano-Materials and DisplaysB.M.S. College of EngineeringBangaloreIndia
  4. 4.Department of ChemistryB.M.S. College of EngineeringBangaloreIndia
  5. 5.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  6. 6.Department of Physics, Faculty of SciencesKing Khalid UniversityAbhaSaudi Arabia
  7. 7.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  8. 8.Department of ChemistrySRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations