Advertisement

Combined pretreatments of coffee silverskin to enhance fermentable sugar yield

  • Saverio Niglio
  • Alessandra Procentese
  • Maria Elena RussoEmail author
  • Giovanni Sannia
  • Antonio Marzocchella
Original Article
  • 45 Downloads

Abstract

A huge amount of lignocellulosic agro-food processing wastes (AFWs) is produced by agricultural practices and food industries. Coffee silverskin (CSS) is an AFW produced during the coffee bean–roasting process. Pretreatment methods are required to promote the enzymatic hydrolysis of AFWs, including CSS, aimed at their use as feedstock in a sugar-based biorefinery. A combined pretreatment, based on ultrasound and mild alkaline solution, has been optimized for CSS. The effects of sonication time, biomass loading, NaOH concentration and alkaline pretreatment residence time were investigated according to the response surface methodology. The maximum sugar yield (YS = 0.6 g g sugars in pretreated CSS−1) was obtained after enzymatic hydrolysis of CSS pretreated with 5-min sonication at 11% w v−1 biomass loading, and 75-min autoclave in 5% w v−1 NaOH. Fermentation inhibitors in the pretreatment solvent were absent or present at concentrations not affecting the growth of Clostridium sp. relevant for biofuel production. The phenolic content was 25 mgGAE graw_CSS−1.

Keywords

Biorefinery Lignocellulose Coffee silverskin Ultrasound Alkaline pretreatment 

Notes

Acknowledgements

Luciano Cortese is gratefully acknowledged for performing scanning electron microscopy analysis.

Funding information

The present work has been partially funded by the European Union’s Horizon 2020 research and innovation program with the grant agreement no. 654623 “Waste2Fuels - Sustainable production of next generation biofuels from waste streams.”

References

  1. 1.
    De Bowmick G, Sarmah AK, Sen R (2018) Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol 247:1144–1154.  https://doi.org/10.1016/j.biortech.2017.09.163 CrossRefGoogle Scholar
  2. 2.
    Chandel AK, Garlapati VK, Singh AK, Fernandes Antunes FA, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381.  https://doi.org/10.1016/j.biortech.2018.06.004 CrossRefGoogle Scholar
  3. 3.
    Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenergy 11:107–117.  https://doi.org/10.1111/gcbb.12586 Google Scholar
  4. 4.
    Friedl A (2012) Lignocellulosic biorefinery. Environ Eng Manag J 11:75–79CrossRefGoogle Scholar
  5. 5.
    Stolarski MJ, Krzyzaniak M, Łuczyński M et al (2015) Lignocellulosic biomass from short rotation woody crops as a feedstock for second-generation bioethanol production. Ind Crop Prod 75:66–75.  https://doi.org/10.1016/j.indcrop.2015.04.025 CrossRefGoogle Scholar
  6. 6.
    Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550.  https://doi.org/10.1016/j.pecs.2012.02.002 CrossRefGoogle Scholar
  7. 7.
    Morales A, Gullón B, Dávila I, Eibes G, Labidi J, Gullón P (2018) Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Ind Crop Prod 124:582–592.  https://doi.org/10.1016/j.indcrop.2018.08.032 CrossRefGoogle Scholar
  8. 8.
    Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour Technol 99:6017–6027.  https://doi.org/10.1016/j.biortech.2007.11.064 CrossRefGoogle Scholar
  9. 9.
    Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173.  https://doi.org/10.1016/j.jrras.2014.02.003 CrossRefGoogle Scholar
  10. 10.
    Procentese A, Raganati F, Olivieri G, Russo ME, de la Feld M, Marzocchella A (2017) Renewable feedstocks for biobutanol production by fermentation. New Biotechnol 39:135–140.  https://doi.org/10.1016/j.nbt.2016.10.010 CrossRefGoogle Scholar
  11. 11.
    Procentese A, Raganati F, Olivieri G, Russo ME, de la Feld M, Marzocchella A (2019) Agro food wastes and innovative pretreatments to meet biofuel demand in Europe. Chem Eng Technol 42:954–961.  https://doi.org/10.1002/ceat.201800459 CrossRefGoogle Scholar
  12. 12.
    Procentese A, Raganati F, Navarini L et al (2018) Coffee silverskin as a renewable resource to produce butanol and isopropanol. Chem Eng Trans 64.  https://doi.org/10.3303/CET1864024
  13. 13.
    Niglio S, Procentese A, Russo ME et al (2017) Ultrasound-assisted dilute acid pretreatment of coffee silverskin for biorefinery applications. Chem Eng Trans 57:109.  https://doi.org/10.3303/CET1757019 Google Scholar
  14. 14.
    Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7:3493–3503.  https://doi.org/10.1007/s11947-014-1349-z CrossRefGoogle Scholar
  15. 15.
    ICO (2017/18) International coffee organization. http://www.ico.org. Accessed November 2018
  16. 16.
    Didanna HL (2014) A critical review on feed value of coffee waste for livestock feeding. World J Biol Biol Sci 2:72–86Google Scholar
  17. 17.
    Saenger M, Hartge EU, Werther J, Ogada T, Siagi Z (2001) Combustion of coffee husks. Renew Energy 23:103–121.  https://doi.org/10.1016/S0960-1481(00)00106-3 CrossRefGoogle Scholar
  18. 18.
    Conde T, Mussatto SI (2016) Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment. Prep Biochem Biotechnol 46:406–409.  https://doi.org/10.1080/10826068.2015.1084514 CrossRefGoogle Scholar
  19. 19.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729.  https://doi.org/10.1021/ie801542g CrossRefGoogle Scholar
  20. 20.
    Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  21. 21.
    Falls M, Sierra-Ramirez R, Holtzapple MT (2011) Oxidative lime pretreatment of dacotah switchgrass. Appl Biochem Biotechnol 165:243–259.  https://doi.org/10.1007/s12010-011-9247-6 CrossRefGoogle Scholar
  22. 22.
    Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299.  https://doi.org/10.1016/j.biortech.2012.01.168 CrossRefGoogle Scholar
  23. 23.
    Eblaghi M, Niakousari M, Sarshar M, Mesbahi GR (2016) Combining ultrasound with mild alkaline solutions as an effective pretreatment to boost the release of sugar trapped in sugarcane bagasse for bioethanol production. J Food Process Eng 39:273–282.  https://doi.org/10.1111/jfpe.12220 CrossRefGoogle Scholar
  24. 24.
    Kim I, Han J (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217.  https://doi.org/10.1016/j.biombioe.2012.08.024 CrossRefGoogle Scholar
  25. 25.
    Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93.  https://doi.org/10.1016/j.pecs.2013.11.001 CrossRefGoogle Scholar
  26. 26.
    Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind. Eng. Chem. Res 52:3563–3580.  https://doi.org/10.1021/ie3022785 CrossRefGoogle Scholar
  27. 27.
    Martin C, Klinke HB, Marcet M et al (2014) Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 61:483–487.  https://doi.org/10.1515/HF.2007.106 Google Scholar
  28. 28.
    Duret X, Fredon E, Masson E et al (2013) Optimization of acid pretreatment in order to increase the phenolic content of Picea abies bark by surface response methodology. BioResources 8:1258–1273CrossRefGoogle Scholar
  29. 29.
    Chiang P, Lee D, Whiteley CG, Huang C (2017) Antioxidant phenolic compounds from Pinus morrisconicola using compressional-puffing pretreatment and water – ethanol extraction: optimization of extraction parameters. J Taiwan Inst Chem Eng 70:7–14.  https://doi.org/10.1016/j.jtice.2016.10.010 CrossRefGoogle Scholar
  30. 30.
    Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and Agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203.  https://doi.org/10.1016/j.foodchem.2005.07.042 CrossRefGoogle Scholar
  31. 31.
    Trinh LTP, Choi YS, Bae HJ (2018) Production of phenolic compounds and biosugars from flower resources via several extraction 514 processes. Ind Crop Prod 125:261–268.  https://doi.org/10.1016/j.indcrop.2018.09.008 CrossRefGoogle Scholar
  32. 32.
    Preeti VE, Sandhya SV, Kuttiraja M, Sindhu R, Vani S, Kumar SR, Pandey A, Binod P (2012) An evaluation of chemical pretreatment methods for improving enzymatic saccharification of chili postharvest residue. Appl Biochem Biotechnol 167:1489–1500.  https://doi.org/10.1007/s12010-012-9591-1 CrossRefGoogle Scholar
  33. 33.
    Sindhu R, Binod P, Pandey A (2016) A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production. Bioresour Technol 213:58–63.  https://doi.org/10.1016/j.biortech.2016.02.079 CrossRefGoogle Scholar
  34. 34.
    Sluiter A, Hames B, Ruiz R, et al (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP); NREL/TP-510-42618Google Scholar
  35. 35.
    McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094–3103.  https://doi.org/10.1016/j.biombioe.2011.04.018 CrossRefGoogle Scholar
  36. 36.
    Adney B, Baker J (2008) Measurement of cellulase activities. Laboratory Analytical Procedure (LAP); NREL; TP 510 42628Google Scholar
  37. 37.
    Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW (2012) Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121.  https://doi.org/10.1016/j.biombioe.2012.05.003 CrossRefGoogle Scholar
  38. 38.
    Rattanachitthawat S, Suwannalert P, Riengrojpitak S et al (2010) Phenolic content and antioxidant activities in red unpolished Thai rice prevents oxidative stress in rats. J Med Plants Res 4:796–801.  https://doi.org/10.5897/JMPR10.067 Google Scholar
  39. 39.
    Montavon P, Kukic KR, Bortlik K (2007) A simple method to measure effective catalase activities: optimization, validation, and application in green coffee. Anal Biochem 360:207–215.  https://doi.org/10.1016/j.ab.2006.10.035 CrossRefGoogle Scholar
  40. 40.
    Segal LC, Creely J, Martin AEJ, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. J Text Res 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  41. 41.
    Rehman MSU, Kim I, Chisti Y, Han J (2013) Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ Sci Technol 30:1391–1410Google Scholar
  42. 42.
    Soto-Alvarez C, López Miranda J, Rosales-Castro M, Perez-Verdin G, Rodríguez Pérez MA, Hernández I (2013) Alkaline pretreatment of Mexican pine residues for bioethanol production. Afr J Biotechnol 12:4956–4965.  https://doi.org/10.5897/AJB2013.12461 CrossRefGoogle Scholar
  43. 43.
    Procentese A, Raganati F, Olivieri G, Russo ME, Marzocchella A (2019) Combined antioxidant-biofuel production from coffee silverskin. Appl Microbiol Biotechnol 103:1021–1029.  https://doi.org/10.1007/s00253-018-9530-3 CrossRefGoogle Scholar
  44. 44.
    Niglio S, Procentese A, Russo ME, Sannia G, Marzocchella A (2019) Investigation of enzymatic hydrolysis of coffee silverskin aimed at the production of butanol and succinic acid by fermentative processes. BioEnerg Res 12:312–324.  https://doi.org/10.1007/s12155-019-09969-6 CrossRefGoogle Scholar
  45. 45.
    Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R (2018) Biobutanol production from coffee silverskin. Microb Cell Factories 17:154.  https://doi.org/10.1186/s12934-018-1002 CrossRefGoogle Scholar
  46. 46.
    Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92:763–768.  https://doi.org/10.1016/j.apenergy.2011.08.020 CrossRefGoogle Scholar
  47. 47.
    Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796.  https://doi.org/10.1016/j.biortech.2010.07.074 CrossRefGoogle Scholar
  48. 48.
    Florence TM (1980) Degradation of protein disulphide bonds in dilute alkali. Biochem J 189:507–520.  https://doi.org/10.1042/bj1890507 CrossRefGoogle Scholar
  49. 49.
    Xu H, Li B, Mu X (2016) Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res 55:8691–8705.  https://doi.org/10.1021/acs.iecr.6b01907 CrossRefGoogle Scholar
  50. 50.
    Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745.  https://doi.org/10.1016/j.energy.2017.01.005 CrossRefGoogle Scholar
  51. 51.
    Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:1–10.  https://doi.org/10.1186/1754-6834-6-16 CrossRefGoogle Scholar
  52. 52.
    Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242.  https://doi.org/10.1016/j.biortech.2007.09.032 CrossRefGoogle Scholar
  53. 53.
    Niglio S, Procentese A, Russo ME, Piscitelli A, Marzocchella A (2019) Integrated enzymatic pretreatment and hydrolysis of apple pomace in a bubble column bioreactor. Accepted for publication in Biochem Eng JGoogle Scholar
  54. 54.
    Narita Y, Inouye K (2012) High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem 135:943–949.  https://doi.org/10.1016/j.foodchem.2012.05.078 CrossRefGoogle Scholar
  55. 55.
    Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn Stover. Bioresour Technol 97:583–591.  https://doi.org/10.1016/j.biortech.2005.03.040 CrossRefGoogle Scholar
  56. 56.
    Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290.  https://doi.org/10.1016/j.biortech.2008.09.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Chimica dei Materiali e della Produzione IndustrialeUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Istituto di Ricerche sulla Combustione - Consiglio Nazionale delle RicercheNaplesItaly
  3. 3.Dipartimento di Scienze ChimicheUniversità degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’AngeloNaplesItaly

Personalised recommendations