Potential use of glycerol from the biodiesel industry: germination and first phase of growth evaluation of two domesticated varieties of Phaseolus vulgaris

  • Eugenia Guadalupe Ortiz Lechuga
  • Manuel Alejandro Pinal Rosales
  • Ingrid Astrid Martínez Ortega
  • Katiushka Arévalo NiñoEmail author
Original Article


The use of biodiesel has increased in the last decade and so has the obtainment of the main by-product from its manufacturing, glycerol; however, the direct use of it has not been possible due to the residual components that are present from the biodiesel production itself and the high-cost purification methods necessary for its reuse. Since this molecule presents a high potential for the development of a large variety of products, it is of great importance that this resource is harnessed. We present the results obtained from the use of a simple pH-based precipitation technique from which we obtained glycerol with 50% wt. purity and its assessment as a germination additive in two varieties of common bean (Phaseolus vulgaris) obtaining a competitive behavior when compared with a commercial organic fertilizer within the germination and first stage of plant development suggesting a new use as an added value product for the biofuels industry.


Glycerol Biodiesel Fertilizer Recycling Purification technique 



We would like to thank the Biotechnology Institute of the Autonomous University of Nuevo León for the support provided in the development of this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Viswas A, Tewari K (2009) A textbook of organic chemistry, 3rd edn. Vikas Publishing House, Chennai ISBN: 8125918574, 9788125918578Google Scholar
  2. 2.
    Israel AU, Obot IB, Asuquo JE (2008) Recovery of glycerol from spent soap lye by–product of soap manufacture. E-J of Chem 5:940–945CrossRefGoogle Scholar
  3. 3.
    Ciriminna R, Pina C, Della Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116:1432–1439CrossRefGoogle Scholar
  4. 4.
    OECD/FAO (2014) OECD-FAO Agricultural Outlook 2014, OECD Publishing. Accessed 14 May 2018Google Scholar
  5. 5.
    Pagliaro M, Rossi M (2010) Glycerol: properties and production. In: Pagliaro M, Rossi M (eds) The future of glycerol, 2nd edn. The royal Society of Chemistry RCS UK, London, pp 1–28Google Scholar
  6. 6.
    Rodrigues A, Bordado JC, Dos Santos RG (2017) Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals—a technological review for three chemical pathways. Energies 10(11):1817CrossRefGoogle Scholar
  7. 7.
    Wolfson A, Litvak G, Dlugy C, Shotland Y, Tavor D (2009) Employing crude glycerol from biodiesel production as an alternative green reaction medium. Ind Crop Prod 30:78–80CrossRefGoogle Scholar
  8. 8.
    OECD/FAO (2016) OECD-FAO Agricultural Outlook 2016–2025. OECD Publishing, Paris. Accessed 14 May 2018Google Scholar
  9. 9.
    Farobie AO, Achmadi SS, Darusman LK (2012) Utilization of glycerol derived from jatropha’s biodiesel production as a cement grinding. World Acad Sci Eng Technol 3:791–796Google Scholar
  10. 10.
    Hajek M, Skopal F (2010) Treatment of glycerol phase formed by biodiesel production. Bioresour Technol 101:3242–3245CrossRefGoogle Scholar
  11. 11.
    Tan HW, Abdul AR, Aroua MK (2013) Glycerol and its applications as a raw material: a review. Renew Sust Energ Rev 27:118–127CrossRefGoogle Scholar
  12. 12.
    Yang F, Hanna M, Sun R (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:1–10CrossRefGoogle Scholar
  13. 13.
    Orantes, M (2008) Purificación de glicerina a pequeña escala como subproducto de reacción de la síntesis de biodiesel por el método de destilación a presión reducida. Tesis Profesional, Universidad de San Carlos de GuatemalaGoogle Scholar
  14. 14.
    Isahak WNRW, Ismail M, Yarmo MA, Jahim JM, Salimon J (2010) Purification of crude glycerol from transesterification RBD palm oil over homogeneous catalysts for the biolubricant preparation. J Appl Sci 10:2590–2595CrossRefGoogle Scholar
  15. 15.
    Pachauri N, He B (2006) Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. American Society of Agricultural and Biological Engineers ASABE Annual International Meeting 066223Google Scholar
  16. 16.
    Hiremath A, Kannabiran M, Rangaswamy V (2011) 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnol 28:19–23CrossRefGoogle Scholar
  17. 17.
    Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorization of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71CrossRefGoogle Scholar
  18. 18.
    Sarma S, Brar S, Sydney E, Bihan Y, Buelna G, Soccol C (2012) Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrog Energy 37:6473–6490CrossRefGoogle Scholar
  19. 19.
    Hernández Mora JA, Acevedo Paez JC, Valdes Rentería CF, Posso Rivera FR (2015) Evaluación de rutas alternativas de aprovechamiento de la glicerina obtenida en la producción de biodiesel: una revisión, vol 33. Ingeniería y Desarrollo, San Jose, pp 126–148Google Scholar
  20. 20.
    De Barros Silva E, Hizula EN, Grazziotti PH, Fabris JD, Campos AT (2015) Glycerin effluent from the biodiesel industry as potassium source to fertilize soybean crop. Afr J Agric Res 10:1572–1580CrossRefGoogle Scholar
  21. 21.
    Qian P, Schoenau J, Urton R (2011) Effect of soil amendment with thin stillage and glycerol on plant growth and soil properties. J Plant Nutr.
  22. 22.
    Treinyte J, Cesoniene L, Bridziuviene D, Ostrauskaite J, Bucinskas A, Rainosalo E, Grazulevic V (2018) Applicability of crude glycerol as the multifunctional additive for the preparation of mulching coatings. Waste Biomass Valor.
  23. 23.
    ASTM D1298-12b (2017) Standard test method for density, relative density, or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM International, West ConshohockenGoogle Scholar
  24. 24.
    Girón H, Valencia Y (2013) Obtención de carbonato de glicerol a partir de glicerina cruda vía glicerólisis de urea. Tesis Profesional, Universidad del ValleGoogle Scholar
  25. 25.
    AOAC (2003) AOAC official method 940.28. Fatty acids (free) in crude and refined oils Official methods of analysis of AOAC international. AOAC International, Washington, DCGoogle Scholar
  26. 26.
    Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol.
  27. 27.
    Ferrero AJ, Rosa IM, Veneciano E (2010) Proceso de purificación de la glicerina obtenida del biodiesel a pequeña escala. Centro de Investigación en Tecnología Lactocárnica. Universidad Tecnológica Nacional/Facultad Regional Villa Maria, Villa MariaGoogle Scholar
  28. 28.
    Kongjao S, Damronglerd S, Hunsom M (2010) Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J Chem Eng 27:944–949CrossRefGoogle Scholar
  29. 29.
    Posada J, Cardona C (2010) Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiesel. Ingeniería Universidad de Bogotá 14;1:9–27Google Scholar
  30. 30.
    Sdrula N (2010) A study using classical or membrane separation in the biodiesel process. Desalination 250:1070–1072CrossRefGoogle Scholar
  31. 31.
    Nanda MR, Yuan Z, Qin W, Poirier MA, Chunbao X (2014) Purification of crude glycerol using acidification: effects of acid types and products characterization. Austin Chem Eng 1:1–7Google Scholar
  32. 32.
    Hu SJ, Luo XL, Wan CX, Li YB (2012) Characterization of crude glycerol from biodiesel plants. J Agric Food Chem.
  33. 33.
    Ooi TL, Yong KC, Hazimah AH, Dzulkefty K, Wan-Yunus WMZ (2001) Crude glycerin recovery from glycerol residue waste from a palm kernel oil methyl ester plant. J Oil Palm Res 13:16–22Google Scholar
  34. 34.
    Ortiz E, Quintero I, Arévalo K (2016) Biodiesel production from three mixes of oils with high free fatty content: quality evaluation and variable analysis. Int J Environ Sci Technol 13(5):1367–1376CrossRefGoogle Scholar
  35. 35.
    Fernández de CF, Gepts P, López M (1986) Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L). Centro Internacional de Agricultura Tropical (CIAT), Cali, p 34Google Scholar
  36. 36.
    Hu J, Zhang Y, Wang J, Zhou Y (2014) Glycerol affects root development through regulation of multiple pathways in Arabidopsis. PLoS ONE.
  37. 37.
    Lin ECC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578CrossRefGoogle Scholar
  38. 38.
    Leegood RC, Labate CA, Huber SC, Neuhaus HE, Stitt M (1988) Phosphate sequestration by glycerol and its effects on photosynthetic carbon assimilation by leaves. Planta 176:117–126CrossRefGoogle Scholar
  39. 39.
    Eastmond, PJ (2004) Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J 37:617–625CrossRefGoogle Scholar
  40. 40.
    The Soap and Detergent Association, Glycerine and Oleochemical Division (1990) Glycerine: an overview. Accessed 27 Oct 2018
  41. 41.
    Martínez Ortega, IA (2016) Purificación de glicerol derivado de la producción de biodiesel y su utilización en la elaboración de un producto de valor agregado. Tesis Profesional, Universidad Autónoma de Nuevo LeónGoogle Scholar
  42. 42.
    Treviño C, Rosas R (2013) El frijol común: factores que merman su producción. La Ciencia y el Hombre. Revista de Divulgación Científica y Tecnológica de la Universidad Veracruzana 26:1Google Scholar
  43. 43.
    Tolner L, Czinkota I, Sándor G, Tolner K (2010) Testing the effect of redirected glycerol byproducts on the nutrition providing ability of the soil. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August, Brisbane, AustraliaGoogle Scholar
  44. 44.
    Vágó I, Kátai J, Kóvacs AB (2005) Changes in the carbon cycle parameters in a pot experiment under ryegrass. Cereal Res Commun 33:381–384CrossRefGoogle Scholar
  45. 45.
    López Bucio J, Cruz Ramírez A, Herrera Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plan Biol 6:280–287CrossRefGoogle Scholar
  46. 46.
    Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Adv Agron 110:251–331CrossRefGoogle Scholar
  47. 47.
    Polanía JA, Rao Idupulapati M, Beebe S, García R (2009) Desarrollo y distribución de raíces bajo estrés por sequía en fríjol común (Phaseolus vulgaris L.) en un sistema de tubos con suelo. Agron Colomb 27:25–32Google Scholar
  48. 48.
    Williams H (2016) Soil factors affecting plant performance of climbing beans (Phaseolus vulgaris L.) in south western Kenya Department of soil and environment. Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  49. 49.
    Ruiz Corral JA, Medina García G, González Acuña IJ, Flores López HE, Ramírez Ojeda G, Ortiz Trejo C, Byerly Murphy KF and Martínez Parra RA (2013) Requerimientos agroecológicos de cultivos. Segunda Edición. Libro Técnico Núm. 3. INIFAP. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias-CIRPAC-Campo Experimental Centro Altos de Jalisco, Tepatitlán de Morelos, p 564Google Scholar
  50. 50.
    Benacchio SS (1982) Algunas exigencias agroecológicas en 58 especies de cultivo con potencial de producción en el Trópico Americano. FONAIAP. Centro Nal. de Inv. Agropecuarias. Ministerio de Agricultura y Cría, Maracay, p 202Google Scholar
  51. 51.
    Razaq M, Zhang P, Salahuddin HS (2017) Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE.
  52. 52.
    Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447CrossRefGoogle Scholar
  53. 53.
    He M, Zhang K, Tan H, Hu R, Su J, Wang J, Huang L, Zhang Y, Li X (2015) Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecol Evol.
  54. 54.
    Bojovic B, Stojanovic J (2005) Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Arch of Biol Sci 57:283–290CrossRefGoogle Scholar
  55. 55.
    Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eugenia Guadalupe Ortiz Lechuga
    • 1
  • Manuel Alejandro Pinal Rosales
    • 1
  • Ingrid Astrid Martínez Ortega
    • 1
  • Katiushka Arévalo Niño
    • 1
    Email author
  1. 1.Biotechnology Institute, Faculty of Biological SciencesUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico

Personalised recommendations