Advertisement

Biological effects of particulate matter emissions from residential pellet boilers in bacterial assays: influence of an electrostatic precipitation

  • Anna-Lena SchulzeEmail author
  • Daniel Büchner
  • Volker Klix
  • Volker Lenz
  • Martin Kaltschmitt
Original Article
  • 56 Downloads

Abstract

Many studies showed that there are associations between particulate matter (PM) emissions and negative health effects. Sources for particulate matter PM emissions are, in addition to industry and traffic, residential wood combustion. Such PM emissions consist typically of non-combustible impurities contained naturally within the wood fuels (e.g., ash). Additionally, heavy metals from the wood fuel and/or polycyclic aromatic hydrocarbons (PAHs) formed during incomplete combustions may condense on the surface of these particulate matter and may increase the toxicity of these particles. To reduce negative health effects, wood combustion appliances are forced to emit less PM emissions. This may lead to an increased use of electrostatic precipitators to meet the valid threshold values. Against this background, the overall goal of this paper is it to compare biological effects of PM emissions released under full- and partial-load conditions of a wood pellet boiler with and without a flue gas treatment with an electrostatic precipitator in bacterial assays. The results show that PM emissions emitted under full-load conditions show a lower cytotoxic potential than those collected under partial load. No difference for the genotoxicity between full-load and partial-load conditions could be identified. However, significantly lower genotoxicity during full-load operation and precipitation but higher genotoxicity during partial load and precipitation have been found. Conclusively, the results indicate that the PM emissions emitted under full-load conditions show overall less cytotoxicity and genotoxicity than the emissions from partial-load operation. The PAH concentration doubles between full load and partial load with separator and quadruples between full load and partial load without precipitator.

Keywords

Biomass combustion Toxicity Electrostatic precipitation Bioassays, genotoxicity, cytotoxicity 

Abbreviations

BCT

Bacterial contact assay

FAU

Formazine attenuation units (standardized unit for turbidity)

NOEC

No observed effect level

SMPS

Scanning mobility particle sizer

STP

Standard temperature and pressure

d.b.

Dry basis

n.d.

Not detectable

ESP

Electrostatic precipitator

LOEC

Lowest observed effect concentration

DL

Dilution level

ONPG

O-nitrophenyl-β-d-galactopyranoside

w.b.

Wet basis

Notes

Acknowledgments

Parts of this study have been performed in the framework of the ToxOAb project.

Funding information

The research leading to these results has received funding from the Federal Ministry of Education and Research under funding reference number 03KB090A.

References

  1. 1.
    Kasurinen S, Jalava PI, Tapanainen M, Uski O, Happo MS, Mäki-Paakkanen J, Lamberg H, Koponen H, Nuutinen I, Kortelainen M, Jokiniemi J, Hirvonen MR (2015) Toxicological effects of particulate emissions – a comparison of oil and wood fuels in small- and medium-scale heating systems. Atmos Environ 103:321–330CrossRefGoogle Scholar
  2. 2.
    Lamberg H, Nuutinen K, Tissari J, Ruusunen J, Yli-Pirilä P, Sippula O, Tapanainen M, Jalava P, Makkonen U, Teinilä K, Saarnio K, Hillamo R, Hirvonen MR, Jokiniemi J (2011) Physicochemical characterization of fine particles from small-scale wood combustion. Atmos Environ 45(40):7635–7643CrossRefGoogle Scholar
  3. 3.
    Tapanainen M, Jalava PI, Mäki-Paakkanen J, Hakulinen P, Happo MS, Lamberg H, Ruusunen J, Tissari J, Nuutinen K, Yli-Pirilä P, Hillamo R, Salonen RO, Jokiniemi J, Hirvonen MR (2011) In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances. Atmos Environ 45(40):7546–7554CrossRefGoogle Scholar
  4. 4.
    Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, Koch E, Krause GHM, Kreyling WG, Rauchfuss K, Rombout P, Schulz-Klemp V, Thiel WR, Wichmann HE (2004) Health effects of particles in ambient air. Int J Hyg Environ Health 207(4):399–407CrossRefGoogle Scholar
  5. 5.
    Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewinski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141CrossRefGoogle Scholar
  6. 6.
    Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106CrossRefGoogle Scholar
  7. 7.
    Karvosenoja N, Tainio M, Kupiainen K, Tuomisto JT, Kukkonen J, Johansson M (2008) Evaluation of the emissions and uncertainties of PM2.5 originated from vehicular traffic and domestic wood combustion in Finland. Boreal Environ Res 13(5):465–474Google Scholar
  8. 8.
    Favez O, Cachier H, Sciare J, Sarda-Estève R, Martinon L (2009) Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos Environ 43(22–23):3640–3644CrossRefGoogle Scholar
  9. 9.
    Kocbach Bølling A, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C (2009) Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6:29CrossRefGoogle Scholar
  10. 10.
    Nussbaumer T. Characterisation of particles from wood combustion with respect to health relevance and electrostatic precipitation. In: 3rd Central European Biomass Conference: 26th to 29th January 2011, Graz, Austria: Proceedings; 2011Google Scholar
  11. 11.
    Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd edn. Springer Vieweg, Berlin, HeidelbergGoogle Scholar
  12. 12.
    Nussbaumer T, Lauber A (2010) Verhalten von Staub und Teer in Elektroabscheidern. Holz-Zentralblatt:1126–1128Google Scholar
  13. 13.
    Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRefGoogle Scholar
  14. 14.
    Nussbaumer T, Lauber A (2010) Formation mechanisms and physical properties of particles from wood combustion for design and operation of electrostatic precipitators. In: ETA-Florence Renewable Energies, editor. Proceedings of the 18th European Biomass Conference and Exhibition, 3–7 May 2010Google Scholar
  15. 15.
    Löndahl J, Pagels J, Boman C, Swietlicki E, Massling A, Rissler J, Blomberg A, Bohgard M, Sandström T (2008) Deposition of biomass combustion aerosol particles in the human respiratory tract. Inhal Toxicol 20(10):923–933CrossRefGoogle Scholar
  16. 16.
    Nussbaumer T, Hasler P (1999) Bildung und Eigenschaften von Aerosolen aus Holzfeuerungen. Holz Roh Werkst 57(1):13–22CrossRefGoogle Scholar
  17. 17.
    Ghafghazi S, Sowlati T, Sokhansanj S, Bi X, Melin S (2011) Particulate matter emissions from combustion of wood in district heating applications. Renew Sust Energ Rev 15(6):3019–3028CrossRefGoogle Scholar
  18. 18.
    Boman C, Nordin A, Boström D, Öhman M (2004) Characterization of inorganic particulate matter from residential combustion of pelletized biomass fuels. Energy Fuel 18(2):338–348CrossRefGoogle Scholar
  19. 19.
    Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44(46):7520–7540CrossRefGoogle Scholar
  20. 20.
    Uski O, Jalava PI, Happo MS, Leskinen J, Sippula O, Tissari J, Mäki-Paakkanen J, Jokiniemi J, Hirvonen MR (2014) Different toxic mechanisms are activated by emission PM depending on combustion efficiency. Atmos Environ 89:623–632CrossRefGoogle Scholar
  21. 21.
    Forbes EGA, Easson DL, Lyons GA, McRoberts WC (2014) Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler. Energy Convers Manag 87:1162–1169CrossRefGoogle Scholar
  22. 22.
    Kaivosoja T, Jalava PI, Lamberg H, Virén A, Tapanainen M, Torvela T, Tapper U, Sippula O, Tissari J, Hillamo R, Hirvonen MR, Jokiniemi J (2013) Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20–25 kW) and medium (5–10 MW) scale. Atmos Environ 77:193–201CrossRefGoogle Scholar
  23. 23.
    Sippula O, Hokkinen J, Puustinen H, Yli-Pirilä P, Jokiniemi J (2009) Particle emissions from small wood-fired district heating units. Energy Fuel 23(6):2974–2982CrossRefGoogle Scholar
  24. 24.
    Oekotube » Schräder Abgastechnologie; Available from: https://www.schraeder.com/oekotube
  25. 25.
  26. 26.
    Condensation Particle Counter 3772 | TSI; Available from: http://tsi.com/condensation-particle-counter-3772/
  27. 27.
    DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol 38(12):1185–1205CrossRefGoogle Scholar
  28. 28.
    Good J, Nussbaumer T (1993) Wirkungsgradbestimmung bei Holzfeuerungen. In: ZürichGoogle Scholar
  29. 29.
    Leskinen J, Tissari J, Uski O, Virén A, Torvela T, Kaivosoja T et al (2014) Fine particle emissions in three different combustion conditions of a wood chip-fired appliance – particulate physico-chemical properties and induced cell death. Atmos Environ 86:129–139CrossRefGoogle Scholar
  30. 30.
    Happo MS, Uski O, Jalava PI, Kelz J, Brunner T, Hakulinen P, Mäki-Paakkanen J, Kosma VM, Jokiniemi J, Obernberger I, Hirvonen MR (2013) Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. Sci Total Environ 443:256–266CrossRefGoogle Scholar
  31. 31.
    Rönnpagel K, Liss W, Ahlf W (1995) Microbial bioassays to assess the toxicity of solid-associated contaminants. Ecotoxicol Environ Saf 31(2):99–103CrossRefGoogle Scholar
  32. 32.
    DIN 38412–48: 2002–09. German standard methods for the examination of water, waste water and sludge - Bio-assays (group L) - Part 48: Toxicity test with Arthrobacter globiformis for contaminated solids (L 48)Google Scholar
  33. 33.
    Heise S, Ahlf WA (2005) New microbial contact assay for marine sediments. J Soils Sediments 5(1):9–15CrossRefGoogle Scholar
  34. 34.
    Toolaram AP, Gutiérrez IR, Ahlf W (2012) Modification of the umu-assay (ISO 13829) accounting for cytotoxicity in genotoxicity assessment: a preliminary study. Mutat Res-Gen Tox En 747(2):190–196CrossRefGoogle Scholar
  35. 35.
    Oda Y, Nakamura S-i, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res-Envir Muta 147(5):219–229Google Scholar
  36. 36.
    Nakamura S-i, Oda Y, Shimada T, Oki I, Sugimoto K (1987) SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutat Res Lett 192(4):239–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität Hamburg (TUHH) Institut für Umwelttechnik und Energiewirtschaft (IUE)HamburgGermany
  2. 2.Deutsches Biomasseforschungszentrum (DBFZ)LeipzigGermany
  3. 3.Noack Laboratorien GmbHSarstedtGermany

Personalised recommendations