Advertisement

Biomass Conversion and Biorefinery

, Volume 9, Issue 2, pp 333–339 | Cite as

Characterization and use of southern cattail for biorefining-based production of furfural

  • M. T. García
  • M. A. M. Zamudio
  • J. M. Loaiza
  • A. B. Morales
  • A. Alfaro
  • F. Lopez
  • Juan Carlos GarcíaEmail author
Original Article
  • 109 Downloads

Abstract

In this work, we assessed the potential of southern cattail (Typha domingensis) as a lignocellulosic material for producing furfural in some regions. Also, we modeled and optimized the process involving autohydrolysis of the raw material, and its subsequent separation by liquid–liquid extraction and simple distillation. The process is based on biorefining principles and aimed at preserving the integrity of other polymer fractions of the raw material for subsequent use. The autohydrolysis liquor and furfural were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy, and high pressure liquid chromatography (HPLC). Also, a central composite factor design was used to model and optimize the autohydrolysis/liquid–liquid extraction process for conversion of hemicellulosic materials into furfural. Based on the results, southern cattail is a suitable material for extracting hemicellulose to be converted into furfural while preserving other fractions of use for other purposes. The optimum operating ranges for the autohydrolysis conditions were found to be 177–189 °C and 30–45 min. Under such conditions, 20–25% of all xylan in the raw material was converted into furfural with little simultaneous production of degradation products. Furfural in the autohydrolysis liquor was separated virtually quantitatively by extraction with chloroform and subsequent simple distillation.

Keywords

Autohydrolysis Biorefinery Furfural Southern cattail Hemicelulloses 

Notes

Funding information

This work received funding from the Andalusian Regional Ministry of Economy, Innovation, Science, and Employment (Project number RNM 2323 and FPI grant), the Ministry of Economy and Competitiveness, National Program for Research Aimed at the Challenges of Society and co-financed with European Regional Development Fund (FEDER funds), CTQ2013-46804-C2-1-R and CTQ2017-85251-C2-1-R), and the National Technological Institute of Mexico/Technological Institute of Cd. Madero (6058.17-P).

References

  1. 1.
    Chen SS, Maneerung T, OK YS, Wang CH (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273.  https://doi.org/10.1016/j.cej.2017.07.020 CrossRefGoogle Scholar
  2. 2.
    Loaiza JM, López F, García MT, García JC, Díaz MJ (2018) Integral valorization of tagasaste (Chamaecytisus proliferus) under thermochemical processes. Biomass Conv Bioref 8:265–274.  https://doi.org/10.1007/s13399-017-0258-6 CrossRefGoogle Scholar
  3. 3.
    Clark JH (2007) Green chemistry for the second generation biorefinery – sustainable chemical manufacturing based on biomass. J Chem Technol 82:603–609.  https://doi.org/10.1002/jctb.1710 Google Scholar
  4. 4.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  5. 5.
    Jin AX, Ren JL, Peng F, Xu F, Zhou GY, Sun RC, Kennedy JF (2009) Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: composition, structure, and thermal properties. Carbohydr Polym 78:609–619.  https://doi.org/10.1016/j.carbpol.2009.05.024 CrossRefGoogle Scholar
  6. 6.
    Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products, 1st edn. Elsevier Science, KölnGoogle Scholar
  7. 7.
    Marcotullio G, De Jong W (2011) Furfural formation from D-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionaly high yields. Carbohydr Res 346:1291–1293.  https://doi.org/10.1016/j.carres.2011.04.036 CrossRefGoogle Scholar
  8. 8.
    Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granadosa M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189.  https://doi.org/10.1039/C5EE02666K CrossRefGoogle Scholar
  9. 9.
    Raman JK, Gnansounou E (2015) Furfural production from empty fruit bunch. A biorefinery approach. Ind Crop Prod 69:371–377.  https://doi.org/10.1016/j.indcrop.2015.02.063 CrossRefGoogle Scholar
  10. 10.
    Dutta S, De S, Saha B, Alam MI (2012) Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 2:2025–2036.  https://doi.org/10.1039/C2CY20235B CrossRefGoogle Scholar
  11. 11.
    Zhen H, Zhua Y, Teng B, Bai Z, Zhang C, Xiang H, Li Y (2006) Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J Mol Catal A-Chem 246:18–23.  https://doi.org/10.1016/j.molcata.2005.10.003 CrossRefGoogle Scholar
  12. 12.
    Carretero JL (2004) Flora Arvense española. Las malas hierbas de los cultivos españoles. Phytoma-España, ValenciaGoogle Scholar
  13. 13.
    Cooper PF (1996) Reed Beds and Constructed Wetlands for Wastewater Treatment. Water Research Centre (WRC), Severn Trent Water, Grean BritainGoogle Scholar
  14. 14.
    Fernández J, De Miguel E, De Miguel J, Curt Fernández MD (2010) Manual de fitodepuración. Filtros de macrófitas en flotación. Ayuntamiento Lorca, Universidad Politécnica de Madrid, Fundación Global Nature y Obra social Caja Madrid. MadridGoogle Scholar
  15. 15.
    Villaseñor R, Espinosa JL, Espinosa FJG (1998) Catálogo de Malezas de México. Universidad Nacional Autónoma de México, Consejo nacional consultivo fitosanitario y fondo de cultura económica, México, D. F. pp 449Google Scholar
  16. 16.
    Mulet L (1991) Estudio etnobotánico de la provincia de Castellón. Diputación de Castellón, Castellón de la PlanaGoogle Scholar
  17. 17.
    Blanco E (1995) Invetigaciones etnobotánicas en la sierra del Caurel (Lugo) y en la Calabria Estremeña (Badajoz). PhD Thesis. Madrid. SpainGoogle Scholar
  18. 18.
    Rivera D, Obón de Castro C (2007) La guía de Incafo de las plantas útiles y venenosas de la Península Ibérica y Baleares (excluidas medicinales). Incafo, MadridGoogle Scholar
  19. 19.
    Vidal M (2014). No es magia ni ciencia ficción…son plantas en acción. Paginas verdes Xalapa, pp 1–4. http://www.paginasverdesxalapa.com/pdf/noesmagianicienciaficcion_monserratvidalalvarez.pdf
  20. 20.
    Álvarez J, Bécares JE (2007) Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Eng 28:99–105.  https://doi.org/10.1016/j.ecoleng.2006.05.001 CrossRefGoogle Scholar
  21. 21.
    César NR, Pereira-da-Silva MA, Botaro VR (2015) Cellulose nanocrystals from natural fiber of the macrophyte Typha Domingensis: extraction and characterization. Cellulose 22:449–460.  https://doi.org/10.1007/s10570-014-0533-7 CrossRefGoogle Scholar
  22. 22.
    Wise LE, Marphy M, Adieco AD (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelulluloses. Paper Trade J 122:35–46Google Scholar
  23. 23.
    López F, García MT, Feria MJ, García JC, De Diego CM, Zamudio MAM, Díaz MJ (2014) Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem Eng J 240:195–201.  https://doi.org/10.1016/j.cej.2013.11.073 CrossRefGoogle Scholar
  24. 24.
    Lange JP, Van der Heide E, Van Buijtenen J, Price R (2012) Furfural a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166.  https://doi.org/10.1002/cssc.201100648 CrossRefGoogle Scholar
  25. 25.
    Lange J (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioprod Biorefin 1:39–48.  https://doi.org/10.1002/bbb.7 CrossRefGoogle Scholar
  26. 26.
    Jiang H, Chen Q, Ge J, Zhang Y (2014) Efficient extraction and characterization of polymeric hemicelluloses from hybrid poplar. Carbohydr Polym 101:1005–1012.  https://doi.org/10.1016/j.carbpol.2013.10.030 CrossRefGoogle Scholar
  27. 27.
    Dávila I, Gordobil O, Labidi J, Gullón P (2016) Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour Technol 211(2016):636–644.  https://doi.org/10.1016/j.biortech.2016.03.153 CrossRefGoogle Scholar
  28. 28.
    Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded etanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317.  https://doi.org/10.1021/jf900986b CrossRefGoogle Scholar
  29. 29.
    García-Larreta FS, Vergara-Sanisaca JM, Nieto-Erazo MS,Nieto-Aguirre MS, Erazo-López DB (2017) Comparative study of the performance of furfural from different agricultural residues. Pol Con 7:570–585.  https://doi.org/10.23857/casedelpo.2017.2.8.agos.570-585
  30. 30.
    Wang Q, Zhuang X, Wang W, Tan X, Qi W, Yuan X (2018) Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chem Eng J 334:698–706.  https://doi.org/10.1016/j.cej.2017.10.089 CrossRefGoogle Scholar
  31. 31.
    Zhang L, Xi G, Chen Z, Jiang D, Yu H, Wang X (2017) Highly selective conversion of glucose into furfural over modified zeolites. Chem Eng J 307:868–876.  https://doi.org/10.1016/j.cej.2016.09.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PRO2TEC – Chemical Engineering Department, Campus “El Carmen”University of HuelvaHuelvaSpain
  2. 2.Master Studies and Research SectionTechnological Institute of Ciudad MaderoCiudad MaderoMexico

Personalised recommendations