Biomass Conversion and Biorefinery

, Volume 9, Issue 2, pp 433–443 | Cite as

Biofuel consisting of wheat straw–poplar wood blends: thermogravimetric studies and combustion characteristic indexes estimation

  • Sergio Paniagua
  • Ana I. García-Pérez
  • Luis F. CalvoEmail author
Original Article


Renewable energies can play an important role reversing the current fossil fuels dependence. Among these, biomass is finding more uses consolidating itself as the energy of the future. Current trend is focused on the manufacture of new blends able to achieve a better use of this biomass. The aim of this paper was to assess the potential as fuel of a series of blends consisting of wheat straw and poplar wood fertilized in organic way. Different poplar clones were fertilized with two organic amendments derived from sewage plants. Thus, the effect of clones and fertilization on the thermal behavior of the blends was studied. For this purpose, fuel and thermogravimetric analysis as well as combustion characteristic indexes were used. Results denoted acceptable fuel analysis values. Thermogravimetric profiles showed three mass losses related to volatiles (550 K and 650 K) and char (700 K) liberation. The greatest mass release for blends occurred for the first stage. In particular, the blend consisting of AF8 poplar clone without fertilizer together with straw was the one that experienced this greater release. In the same way, thermal indexes warned of better thermal behavior when fertilizer was not applied; being, again, the blend mentioned above, the one that achieved the best indexes values. Thus, fertilization decreased the thermal performance of wheat straw–poplar wood blends.


Biomass blends Organic fertilization Poplar wood Thermal indexes Thermogravimetric analysis Wheat straw 


Funding information

This study received funds given by the Junta de Castilla y León (Project LE129A11). In addition, Sergio Paniagua received PhD fellowship (FPU14/05846) from the Spanish Ministry of Education, Culture and Sports.


  1. 1.
    Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5:683–707. CrossRefGoogle Scholar
  2. 2.
    Zanchi G, Pena N, Bird N (2012) Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy 4:761–772CrossRefGoogle Scholar
  3. 3.
    Gadi R, Kulshrestha UC, Sarkar AK, Garg SC, Parashar DC (2011) Emissions of SO2 and NOx from biofuels in India. Tellus Ser B Chem Phys Meteorol 55:787–795. CrossRefGoogle Scholar
  4. 4.
    Díaz-Ramírez M, Sebastián F, Royo J, Rezeau A (2014) Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Appl Energy 115:360–373. CrossRefGoogle Scholar
  5. 5.
    Altaher M, Andrews G, Gibbs B et al (2015) Particulate emissions from a 350 kW wood pellet heaterGoogle Scholar
  6. 6.
    Hoogwijk M, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133. CrossRefGoogle Scholar
  7. 7.
    Caputo AC, Palumbo M, Pelagagge PM, Scacchia F (2005) Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy 28:35–51CrossRefGoogle Scholar
  8. 8.
    Gasol CM, Gabarrell X, Anton A, Rigola M, Carrasco J, Ciria P, Rieradevall J (2009) LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass Bioenergy 33:119–129. CrossRefGoogle Scholar
  9. 9.
    Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Chang Biol 13:2296–2307. CrossRefGoogle Scholar
  10. 10.
    Demirbas A (2003) Sustainable cofiring of biomass with coal. Energy Convers Manag 44:1465–1479. CrossRefGoogle Scholar
  11. 11.
    Wang C, Wang F, Yang Q, Liang R (2009) Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 33:50–56. CrossRefGoogle Scholar
  12. 12.
    Ciria M, Mazón MP, Carrasco JE (2004) Poplar productivity evolution on short rotation during three consecutive cycles in extreme continental climate. In: 2nd World Conference on Biomass for Energy, industry and Climate ProtectionGoogle Scholar
  13. 13.
    Testa R, Di Trapani AM, Foderà M et al (2014) Economic evaluation of introduction of poplar as biomass crop in Italy. Renew Sust Energ Rev 38:775–780. CrossRefGoogle Scholar
  14. 14.
    Paine LK, Peterson TL, Undersander DJ, Rineer KC, Bartelt GA, Temple SA, Sample DW, Klemme RM (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10:231–242. CrossRefGoogle Scholar
  15. 15.
    Labrecque M, Teodorescu TI (2005) Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 29:1–9CrossRefGoogle Scholar
  16. 16.
    Kole C, Joshi CP, Shonnard DR (2012) Handbook of bioenergy crop plants. CRC Press, Boca RatonCrossRefGoogle Scholar
  17. 17.
    Imbert E, Lefevre F (2003) Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J Ecol 91:447–456. CrossRefGoogle Scholar
  18. 18.
    Observatorio Industrial del sector de la madera y del mueble (2010) El cultivo y utilización del chopo en EspañaGoogle Scholar
  19. 19.
    Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. CrossRefGoogle Scholar
  20. 20.
    Clifton-brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518CrossRefGoogle Scholar
  21. 21.
    Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227CrossRefGoogle Scholar
  22. 22.
    Deimling S, Rohstoffe FN (2000) Leitfaden Bioenergie: Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen. Fachagentur Nachwachsende RohstoffeGoogle Scholar
  23. 23.
    Jasinskas A, Zaltauskas A, Kryzeviciene A (2008) The investigation of growing and using of tall perennial grasses as energy crops. Biomass Bioenergy 32:981–987. CrossRefGoogle Scholar
  24. 24.
    Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236. CrossRefGoogle Scholar
  25. 25.
    ESYRCE (2017) Encuesta sobre Superficies y Rendimientos de Cultivo. Minist Agric Aliment y Medio AmbientGoogle Scholar
  26. 26.
    Mapama (2016) Evolución de la superficie y producción de cereales en España. Minist Agric Aliment y Medio AmbientGoogle Scholar
  27. 27.
    Bin YY, Newman R, Sharifi V et al (2007) Mathematical modelling of straw combustion in a 38 MWe power plant furnace and effect of operating conditions. Fuel 86:129–142. CrossRefGoogle Scholar
  28. 28.
    Sahu SG, Sarkar P, Chakraborty N, Adak AK (2010) Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol 91:369–378CrossRefGoogle Scholar
  29. 29.
    Saddawi A, Jones JM, Williams A, Wojtowicz MA (2009) Kinetics of the thermal decomposition of biomass. Energy Fuel 24:1274–1282CrossRefGoogle Scholar
  30. 30.
    Arenillas A, Rubiera F, Arias B et al (2004) A TG/DTA study on the effect of coal blending on ignition behaviour. J Therm Anal Calorim 76:603–614CrossRefGoogle Scholar
  31. 31.
    Rubiera F, Arenillas A, Arias B, Pis JJ (2002) Modification of combustion behaviour and NO emissions by coal blending. Fuel Process Technol 77:111–117CrossRefGoogle Scholar
  32. 32.
    Paniagua S, Escudero L, Escapa C, Coimbra RN, Otero M, Calvo LF (2016) Effect of waste organic amendments on Populus sp biomass production and thermal characteristics. Renew Energy 94:166–174. CrossRefGoogle Scholar
  33. 33.
    Phillips R, Fisher JT, Mexal JG (1986) Fuelwood production utilizing Pinus eldarica and sewage sludge fertilizer. For Ecol Manag 16:95–102CrossRefGoogle Scholar
  34. 34.
    Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358. CrossRefGoogle Scholar
  35. 35.
    Funcia I (2014) Predicción del comportamiento de compuestos inorgánicos en parrillas de combustion. Universidad de La RiojaGoogle Scholar
  36. 36.
    Nie Q, Sun S, Li Z (2001) Thermogravimetric analysis on the combustion characteristics of brown coal blends. Combust Sci Technol 7:72–76Google Scholar
  37. 37.
    Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230. CrossRefGoogle Scholar
  38. 38.
    Parshetti GK, Quek A, Betha R, Balasubramanian R (2014) TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Process Technol 118:228–234CrossRefGoogle Scholar
  39. 39.
    Plis A, Lasek JA, Zuwała J, Yu CC, Iluk A (2016) Combustion performance evaluation of Posidonia oceanica using TGA and bubbling fluidized-bed combustor (batch reactor). J Sust Min 15:181–190. CrossRefGoogle Scholar
  40. 40.
    Li X, Ma B, Xu L, Hu ZW, Wang XG (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441:79–83. CrossRefGoogle Scholar
  41. 41.
    Xie J, He F (1998) Catalysed combustion study of anthracite in cement kiln. J Chin Ceram Soc 26:792–795Google Scholar
  42. 42.
    Wang S, Jiang XM, Han XX, Liu JG (2009) Combustion characteristics of seaweed biomass. 1. Combustion characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuel 23:5173–5178CrossRefGoogle Scholar
  43. 43.
    Romeo LM, Gareta R (2009) Fouling control in biomass boilers. Biomass Bioenergy 33:854–861. CrossRefGoogle Scholar
  44. 44.
    García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258CrossRefGoogle Scholar
  45. 45.
    Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. CrossRefGoogle Scholar
  46. 46.
    Tortosa Masiá AA, Buhre BJP, Gupta RP, Wall TF (2007) Characterising ash of biomass and waste. Fuel Process Technol 88:1071–1081. CrossRefGoogle Scholar
  47. 47.
    Yin C-Y (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132. CrossRefGoogle Scholar
  48. 48.
    Jenkins BM, Baxter LL, Miles TR, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. CrossRefGoogle Scholar
  49. 49.
    Miranda MT, Arranz JI, Rojas S, Montero I (2009) Energetic characterization of densified residues from Pyrenean oak forest. Fuel 88:2106–2112. CrossRefGoogle Scholar
  50. 50.
    Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856. CrossRefGoogle Scholar
  51. 51.
    ECN (2018) Phyllis2 - Database for biomass and waste. Accessed 19 Jul 2018
  52. 52.
    Hassan EM, Steele PH, Ingram L (2009) Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Appl Biochem Biotechnol 154:3–13. CrossRefGoogle Scholar
  53. 53.
    Lu K-M, Lee W-J, Chen W-H, Liu SH, Lin TC (2012) Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 123:98–105. CrossRefGoogle Scholar
  54. 54.
    Shang L, Nielsen NPK, Dahl J, Stelte W, Ahrenfeldt J, Holm JK, Thomsen T, Henriksen UB (2012) Quality effects caused by torrefaction of pellets made from scots pine. Fuel Process Technol 101:23–28. CrossRefGoogle Scholar
  55. 55.
    Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90:3285–3290. CrossRefGoogle Scholar
  56. 56.
    Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL (2013) Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim 113:569–578. CrossRefGoogle Scholar
  57. 57.
    Haykırı-Açma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44:155–162. CrossRefGoogle Scholar
  58. 58.
    Burhenne L, Messmer J, Aicher T, Laborie M-P (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis 101:177–184. CrossRefGoogle Scholar
  59. 59.
    Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173CrossRefGoogle Scholar
  60. 60.
    Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661. CrossRefGoogle Scholar
  61. 61.
    Kai X, Yang T, Huang Y et al (2011) The effect of biomass components on the co-combustion characteristics of biomass with coal. In: 2011 Second International Conference on Digital Manufacturing & Automation. pp 1274–1278Google Scholar
  62. 62.
    Calvo LF, Otero M, Jenkins BM, Morán A, Garcı́a AI (2004) Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol 85:279–291. CrossRefGoogle Scholar
  63. 63.
    Singh A (1996) A study of reaction kinetics for thermochemical conversion of rice straw. University of California, DavisGoogle Scholar
  64. 64.
    Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. CrossRefGoogle Scholar
  65. 65.
    Zheng G, Koziński JA (2000) Thermal events occurring during the combustion of biomass residue. Fuel 79:181–192. CrossRefGoogle Scholar
  66. 66.
    Yıldız Z, Uzun H, Ceylan S, Topcu Y (2016) Application of artificial neural networks to co-combustion of hazelnut husk–lignite coal blends. Bioresour Technol 200:42–47. CrossRefGoogle Scholar
  67. 67.
    Buratti C, Barbanera M, Bartocci P, Fantozzi F (2015) Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Bioresour Technol 186:154–162. CrossRefGoogle Scholar
  68. 68.
    Wattana W, Phetklung S, Jakaew W, Chumuthai S, Sriam P, Chanurai N (2017) Characterization of mixed biomass pellet made from oil palm and Para-rubber tree residues. Energy Procedia 138:1128–1133. CrossRefGoogle Scholar
  69. 69.
    Gunasee SD, Carrier M, Gorgens JF, Mohee R (2016) Pyrolysis and combustion of municipal solid wastes: evaluation of synergistic effects using TGA-MS. J Anal Appl Pyrolysis 121:50–61CrossRefGoogle Scholar
  70. 70.
    Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F (2010) Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol 101:5601–5608. CrossRefGoogle Scholar
  71. 71.
    Fitzpatrick EM, Bartle KD, Kubacki ML, Jones JM, Pourkashanian M, Ross AB, Williams A, Kubica K (2009) The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor. Fuel 88:2409–2417. CrossRefGoogle Scholar
  72. 72.
    Yuanyuan Z, Yanxia G, Fangqin C, Kezhou Y, Yan C (2015) Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta 614:137–148. CrossRefGoogle Scholar
  73. 73.
    He C, Giannis A, Wang J-Y (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266. CrossRefGoogle Scholar
  74. 74.
    Liu Y, Cao X, Duan X, Wang Y, Che D (2018) Thermal analysis on combustion characteristics of predried dyeing sludge. Appl Therm Eng 140:158–165. CrossRefGoogle Scholar
  75. 75.
    Paniagua S, Calvo LF, Escapa C, Coimbra RN, Otero M, García AI (2017) Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation. J Therm Anal Calorim 131:3139–3149. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of applied chemistry and physics, institute of environment, natural resources and biodiversity (IMARENABIO)University of LeónLeónSpain

Personalised recommendations