Biomass Conversion and Biorefinery

, Volume 8, Issue 3, pp 719–737 | Cite as

Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production

  • Sven BaetgeEmail author
  • Martin Kaltschmitt
Original Article


Rice straw and rice husks occur in large quantities as side streams of the world wide rice production. These side streams can be used as a renewable source of energy via the biochemical as well as the thermochemical conversion route. Exemplarily for samples from various South-East Asian countries, the most important characterizing figures are measured analytically. Then, the two conversion routes—based on a thermochemical as well as on a biochemical conversion—are discussed in detail. Based on such technological solutions as well as the measured data, nine case studies for each conversion system are defined and assessed related to the levelized costs of electricity (LCOEl) and energy (LCOEn). Additionally, the specific substrate demands (SSDs) and specific land demands (SLDs) are calculated indicating the mass and area efficiency of chosen substrates and systems.


Rice straw Rice husks Biochemical conversion Thermochemical conversion Levelized costs of electricity Levelized costs of energy 



  1. 1.
    United States Department of Agriculture (ed.): Grain: world markets and trade, Washington, DC. (2018). Accessed 15 March 2018
  2. 2.
    FAO - Food and Agriculture Organization of the United Nations (ed.): FAOSTAT - Data. (2018). Accessed 15 March 2018
  3. 3.
    Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sust Energ Rev 16(5):3084–3094. CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Sun J, Peng H, Chen J, Wang X, Wei M, Li W, Yang L, Zhang Q, Wang W, Mellouki A (2016) An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J Clean Prod 112:2625–2631. CrossRefGoogle Scholar
  6. 6.
    Duong PT, Yoshiro H (2015) Current situation and possibilities of rice straw management in Vietnam. University of Tsukuba. Accessed 15 March 2018
  7. 7.
    Singh R, Srivastava M, Shukla A (2016) Environmental sustainability of bioethanol production from rice straw in India. A review. Renew Sust Energ Rev 54:202–216. CrossRefGoogle Scholar
  8. 8.
    Zhang H, Hu J, Qi Y, Li C, Chen J, Wang X, He J, Wang S, Hao J, Zhang L, Zhang L, Zhang Y, Li R, Wang S, Chai F (2017) Emission characterization, environmental impact, and control measure of PM 2.5 emitted from agricultural crop residue burning in China. J Clean Prod 149:629–635. CrossRefGoogle Scholar
  9. 9.
    Botta GF, Tolón-becerra A, Lastra-bravo X, Hidalgo R, Rivero D, Agnes D (2015) Alternatives for handling rice (Oryza sativa L.) straw to favor its decomposition in direct sowing systems and their incidence on soil compaction. Geoderma 239-240:213–222. CrossRefGoogle Scholar
  10. 10.
    Fushimi A, Saitoh K, Hayashi K, Ono K, Fujitani Y, Villalobos AM, Shelton BR, Takami A, Tanabe K, Schauer JJ (2017) Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmos Environ 163:118–127. CrossRefGoogle Scholar
  11. 11.
    LU Y, GUO L, Jl C, ZHANG X, HAO X, Yan Q (2006) Hydrogen production by biomass gasification in supercritical water. A parametric study. Int J Hydrog Energy 31(7):822–831. CrossRefGoogle Scholar
  12. 12.
    Nassar MM (1998) Thermal analysis kinetics of bagasse and rice straw. Energy Sources 20(9):831–837. CrossRefGoogle Scholar
  13. 13.
    Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24. MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haykiri-Acma H, Yaman S, Kucukbayrak S (2010) Effect of biomass on temperatures of sintering and initial deformation of lignite ash. Fuel 89(10):3063–3068. CrossRefGoogle Scholar
  15. 15.
    Lin KS, Wang H, Lin C-J, Juch C-I (1998) A process development for gasification of rice husk. Fuel Process Technol 55(3):185–192. CrossRefGoogle Scholar
  16. 16.
    Reynolds W, Kirsch C, Smirnova I (2015) Thermal-enzymatic hydrolysis of wheat straw in a single high pressure fixed bed. CIT 87(10):1305–1312. Google Scholar
  17. 17.
    Hartmann H (2016) Brennstoffzusammensetzung und -eigenschaften. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 3rd edn. Springer Vieweg, Berlin, pp 579–645Google Scholar
  18. 18.
    Netz H (1982) Verbrennung und Gasgewinnung bei Festbrennstoffen. Resch, Gräfelfing/MünchenGoogle Scholar
  19. 19.
    Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544(1–2):191–198. CrossRefGoogle Scholar
  20. 20.
    Phyllis2 - Energy research Centre of the Netherlands (ed.): Database for biomass and waste. Accessed 15 March 2018
  21. 21.
    Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Procedia Chem 19:189–195. CrossRefGoogle Scholar
  22. 22.
    Ramamurthi PV, Fernandes MC, Nielsen PS, Nunes CP (2016) Utilisation of rice residues for decentralised electricity generation in Ghana. An economic analysis. Energy 111:620–629. CrossRefGoogle Scholar
  23. 23.
    Miles TR, Baxter L, Bryers RW, Jenkins M, Oden LL (1995) Alkali deposits found in biomass power plants. A preliminary investigation of their extend and nature. NREL/TP-433-8142. Accessed 15 March 2018
  24. 24.
    Osman EA, Goss JR (1983) Paper No. 83-3549: Ash chemical composition, deformation and fusion temperatures for wood and agricultural residues. In: American Society of Agricultural Engineers (ed) Proceedings of Winter meeting. Winter Meeting, vol 13. - 16. American Society of Agricultural Engineers, Chicago, pp 1–16Google Scholar
  25. 25.
    Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87(5):383–408. CrossRefGoogle Scholar
  26. 26.
    de Oliveira EH, Silva VA, Oliveira RR, Teran AS, Castillo AVA, Harada J, Diaz FRV, Moura EAB (2014) Investigation on mechanical and morphological behaviours of copolyester/starch blend reinforced with rice husk ash. In: Carpenter JS, Bai C, Hwang J-Y, Ikhmayies S, Li B, Monteiro SN, Peng Z, Zhang M (eds) Characterization of minerals, metals, and materials 2014. John Wiley & Sons, Inc, Hoboken, pp 491–498CrossRefGoogle Scholar
  27. 27.
    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. CrossRefGoogle Scholar
  28. 28.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. A review. Int J Mol Sci 9(9):1621–1651. CrossRefGoogle Scholar
  29. 29.
    VDI-Gesellschaft Energie und Umwelt (ed.) (2016): Fermentation of organic materials—characterization of the substrate, sampling, collection of material data, fermentation tests 13.030.30, 4630. Beuth Verlag GmbH, DüsseldorfGoogle Scholar
  30. 30.
    Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569. CrossRefGoogle Scholar
  31. 31.
    Kalra MS, Panwar JS (1986) Anaerobic digestion of rice crop residues. Agric Waste 17(4):263–269. CrossRefGoogle Scholar
  32. 32.
    Gu Y, Zhang Y, Zhou X (2015) Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour Technol 196:116–122. CrossRefGoogle Scholar
  33. 33.
    Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33(12):2653–2658. CrossRefGoogle Scholar
  34. 34.
    Contreras LM, Schelle H, Sebrango CR, Pereda I (2012) Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Water Sci Technol J Int Assoc Water Pollut Res 65(6):1142–1149. CrossRefGoogle Scholar
  35. 35.
    Wendland M, Lichti F (2012) Biogasgärreste. Einsatz von Gärresten aus der Biogasproduktion als Düngemittel. Bayerische Landesanstalt für Landwirtschaft, Freising. Accessed 15 March 2018
  36. 36.
    Shafiea SM, Mahliab TMI, Masjukia HH, Chonga Wt (2013) Logistic cost analysis of rice straw to optimize power plant in Malaysia. J Technol Innov Renew Energy 2:67–75.
  37. 37.
    Delivand MK, Barz M, Gheewala SH (2011) Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy 36(3):1435–1441. CrossRefGoogle Scholar
  38. 38.
    Vijay Ramamurthi P, Cristina Fernandes M, Sieverts Nielsen P, Pedro Nunes C (2014) Logistics cost analysis of rice residues for second generation bioenergy production in Ghana. Bioresour Technol 173:429–438. CrossRefGoogle Scholar
  39. 39.
    IRENA - International Renewable Energy Agency (ed.): Renewable energy technologies: cost analysis series. Hydropower., United Arab Emirates. (2012). Accessed 15 March 2018
  40. 40.
    Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (ed.): Leitfaden Biogas. Von der Gewinnung zur Nutzung, 7th edn. Bioenergie. Druckerei Weidner, Rostock (2016)Google Scholar
  41. 41.
    Delivand MK, Barz M, Gheewala SH, Sajjakulnukit B (2011) Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand. Appl Energy 88(11):3651–3658. CrossRefGoogle Scholar
  42. 42.
    Shafie SM, Masjuki HH, Mahlia T (2014) Rice straw supply chain for electricity generation in Malaysia. Economical and environmental assessment. Appl Energy 135:299–308. CrossRefGoogle Scholar
  43. 43.
    Global Rice Science Partnership (GRiSP) (ed.): Rice almanac. International Rice Research Institute, Los Baños (Philippines). (2013). Accessed 15 March 2018
  44. 44.
    International Rice Research Institute (ed.): Rice Knowledge Bank—harvesting. Harvesting systems. (2017). Accessed 15 March 2018
  45. 45.
    Hegazy Rashad, Sandro Joseph M (2016): Report. Rice Straw Collection. Accessed 15 March 2018
  46. 46.
    van Nguyen H, Nguyen CD, van Tran T, Hau HD, Nguyen NT, Gummert M (2016) Energy efficiency, greenhouse gas emissions, and cost of rice straw collection in the Mekong river delta of Vietnam. Field Crop Res 198:16–22. CrossRefGoogle Scholar
  47. 47.
    Expert talk: adjustment of specific investment costs (85% of reference value) (2018)Google Scholar
  48. 48.
    Köttner M (2016) Sustainable bioenergy production—trends and examples,. Accessed 15 March 2018
  49. 49.
    Germany Trade and Invest - Gesellschaft für Außenwirtschaft und Standortmarketing mbH (ed.): Lohn- und Lohnnebenkosten - Indien.,t=lohn-und-lohnnebenkosten--indien,did=1683508.html (2017). Accessed 15 March 2018
  50. 50.
    Reinhold G (2005) Masse- und Trockensubstanzbilanz in landwirtschaftlichen Biogasanlagen. Thüringer Landesanstalt für Landwirtschaft. Accessed 15 March 2018
  51. 51.
    Rolink D (2013) Gärreste vermarkten: Separieren reicht nicht. topagrar, 7. Accessed 15 March 2018
  52. 52.
    Awengen W, Alps-Lammers H (2014): Maispreis 2014 - So kalkulieren Sie richtig. Accessed 15 March 2018
  53. 53.
    Kröger R, Reckermann M, Schaper C, Theuvsen L (2016) Gärreste als Gartendünger vermarkten? Berichte über Landwirtschaft 94:1. Google Scholar
  54. 54.
    Hartl G, Piepel H Laurenz L (2013) Nährstoffausgleich in und zwischen den Regionen – Strategien für NRW. Transport und Export von Gülle – Ökonomische Konsequenzen für den Betrieb. Landwirtschaftskammer Nordrhein-Westfalen. Accessed 15 March 2018
  55. 55.
    Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement. Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22(8):1675–1683. CrossRefGoogle Scholar
  56. 56.
    He L, Huang H, Zhang Z, Lei Z, Lin B-L (2017) Energy recovery from rice straw through hydrothermal pretreatment and subsequent biomethane production. Energy Fuel 31(10):10850–10857. CrossRefGoogle Scholar
  57. 57.
    Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass. A potential and promising method for enhanced methane production. Appl Energy 94:129–140. CrossRefGoogle Scholar
  58. 58.
    Dehghani M, Karimi K, Sadeghi M (2015) Pretreatment of rice straw for the improvement of biogas production. Energy Fuel 29(6):3770–3775. CrossRefGoogle Scholar
  59. 59.
    Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sust Energ Rev 53:1468–1485. CrossRefGoogle Scholar
  60. 60.
    Kalapathy U (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73(3):257–262. CrossRefGoogle Scholar
  61. 61.
    Nandiyanto ABD, Permatasari N, Sucahya TN, Abdullah AG, Hasanah L (2017) Synthesis of potassium silicate nanoparticles from rice straw ash using a flame-assisted spray-pyrolysis method. IOP Conf Ser: Mater Sci Eng 180:12133. CrossRefGoogle Scholar
  62. 62.
    Roselló J, Soriano L, Santamarina MP, Akasaki JL, Monzó J, Payá J (2017) Rice straw ash. A potential pozzolanic supplementary material for cementing systems. Ind Crop Prod 103:39–50. CrossRefGoogle Scholar
  63. 63.
    Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185(1):31–35. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental Technology and Energy EconomicsHamburg University of Technology (TUHH)HamburgGermany

Personalised recommendations