Advertisement

Biomass Conversion and Biorefinery

, Volume 8, Issue 3, pp 669–678 | Cite as

Thermogravimetric study and evolved gas analysis of new microalga using TGA-GC-MS

  • Isah Yakub Mohammed
  • Zubainatu Abba
  • Hazel Monica Matias-Peralta
  • Yousif Abdalla Abakr
  • Siti Fatimah Zahrah Mohammad Fuzi
Original Article
  • 101 Downloads

Abstract

The growing concerns over the environmental challenges emanating from the use of fossil fuels continue to generate interest in finding competitive and sustainable alternatives. This study presents physicochemical characteristics, thermal decomposition profile and kinetics of a new Botryococcus sp. of microalga isolated from Endau-Rompin, Malaysia. The proximate and ultimate analyses were carried out using standard analytical techniques. Thermogravimetric study was conducted in nitrogen atmosphere using a thermogravimetric analyser coupled with gas chromatography-mass spectrometer. The result revealed that the feedstock has high volatile matter (86.74 wt%) and calorific value of 17.18 MJ/kg. The thermal decomposition of the alga sample proceeded via dehydration, decomposition of extractives, hemicellulose, other carbohydrates and lipid evaporation. The kinetics of the alga sample evaluated using a distributed activation energy model showed that the model sufficiently described the pyrolysis of the feedstock with activation energy of 52.72–159.16 kJ/mol. The chemical composition of the evolved gas revealed high content of hydrocarbons, products of carbohydrate and protein decomposition. This suggests that the alga sample is a good candidate for production of valuable precursors for biofuel processing and production of biochemicals.

Keywords

Botryococcus sp. Characterisation TGA DTG Evolved gas GC-MS 

Notes

Funding information

This work was supported by the Crops for the Future (CFF) and the University of Nottingham under the grant BioP1-005.

References

  1. 1.
    Yakub MI, Mohamed S, Danladi SU (2014) Technical and economic considerations of post-combustion carbon capture in a coal fired power plant. Int J Adv Eng Technol 7(5):1549–1581Google Scholar
  2. 2.
    Mohammed IY, Kazi FK, Yusup S, Alaba PA, Sani YM, Abakr YA (2016) Catalytic intermediate pyrolysis of napier grass in a fixed bed reactor with ZSM-5, HZSM-5 and zinc-exchanged zeolite-A as the catalyst. Energies 9:246CrossRefGoogle Scholar
  3. 3.
    Mohammed IY, Abakr YA, Kazi FK, Yusuf S (2017) Effects of pretreatments of Napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics. Waste and Biomass Valorization 8(3):755–773CrossRefGoogle Scholar
  4. 4.
    Mohammed IY, Abakr YA, Kazi FK, Yusuf S, Alshareef I, Soh AC (2015) Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. Bioresources 10(4):6457–6478CrossRefGoogle Scholar
  5. 5.
    Mohammed IY, Abakr YA, Kazi FK, Yusuf S, Alshareef I, Soh AC (2015) Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies 8(5):3403–3417CrossRefGoogle Scholar
  6. 6.
    Mohammed IY, Abakr YA, Musa M, Yusup S, Singh A, Kazi FK (2016) Valorization of Bambara groundnut shell via intermediate pyrolysis: products distribution and characterization. J Clean Prod 139:717–728CrossRefGoogle Scholar
  7. 7.
    Mohammed IY, Lim CH, Kazi FK, Yusup S, Lam HL, Abakr YA (2017) Co-pyrolysis of rice husk with underutilized biomass species: a sustainable route for production of precursors for fuels and valuable chemicals. Waste and Biomass Valorization 8(3):911–921CrossRefGoogle Scholar
  8. 8.
    Mohammed IY, Abakr YA, Yusup S, Kazi FK (2017) Valorization of Napier grass via intermediate pyrolysis: optimization using response surface methodology and pyrolysis products characterization. J Clean Prod 142:1848–1866CrossRefGoogle Scholar
  9. 9.
    López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis. Energy 73:33–43CrossRefGoogle Scholar
  10. 10.
    Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784CrossRefGoogle Scholar
  11. 11.
    Furuhashi K, Noguchi T, Okada S, Hasegawa F, Kaizu Y, Imou K (2016) The surface structure of Botryococcus braunii colony prevents the entry of extraction solvents into the colony interior. Algal Res 16:160–166CrossRefGoogle Scholar
  12. 12.
    Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol 101:359–365CrossRefGoogle Scholar
  13. 13.
    Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, Xiao B, Wang J, Laghari M (2015) Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour Technol 192:441–450CrossRefGoogle Scholar
  14. 14.
    Mishra G, Kumar J, Bhaskar T (2015) Kinetic studies on the pyrolysis of pinewood. Bioresour Technol 182:282–288CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19CrossRefGoogle Scholar
  16. 16.
    Kim S-S, Ly HV, Choi G-H, Kim J, Woo HC (2012) Pyrolysis characteristics and kinetics of the algae Saccharina japonica. Bioresour Technol 123:445–451CrossRefGoogle Scholar
  17. 17.
    Liu YQ, Lim LR, Wang J, Yan R, Mahakhant A (2012) Investigation on pyrolysis of microalgae Botryococcus braunii and Hapalosiphon sp. Ind Eng Chem Res 51(31):10320–10326CrossRefGoogle Scholar
  18. 18.
    Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species, University of Texas Publications 6318:1–95Google Scholar
  19. 19.
    Gani P, Sunar NM, Matias-Peralta H, Jamaian SS (2016) Effects of different culture conditions on the phycoremediation efficiency of domestic wastewater. J Environ Chem Eng 4(4):4744–4753CrossRefGoogle Scholar
  20. 20.
    Miura K, Maki T (1998) A simple method for estimating f (E) and K0 (E) in the distributed activation energy model. Energy and Fuels 12:864–869CrossRefGoogle Scholar
  21. 21.
    Bach QV, Chen WH, Lin SC, Sheen HK, Chang JS (2017) Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers Manag 141:63–170CrossRefGoogle Scholar
  22. 22.
    Hossain FM, Kosinkova J, Brown RJ, Ristovski Z, Hankamer B, Stephens E, Rainey TJ (2017) Experimental investigations of physical and chemical properties for microalgae HTL bio-crude using a large batch reactor. Energies 10(4):467CrossRefGoogle Scholar
  23. 23.
    Al-Hothaly KA, Adetutu EM, Taha M, Fabbri D, Lorenzetti C, Conti R, May BH, Shar SS, Bayoumi RA, Ball AS (2015) Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii. Bioresour Technol 191:117–123CrossRefGoogle Scholar
  24. 24.
    Mohammed IY, Abakr YA, Hui JNX, Alaba PA, Morris KI, Ibrahim MD (2017) Recovery of clean energy precursors from Bambara groundnut waste via pyrolysis: kinetics, products distribution and optimisation using response surface methodology. J Clean Prod 164:1430–1445CrossRefGoogle Scholar
  25. 25.
    Kuprianov VI, Arromdee P (2013) Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study. Bioresour Technol 140:199–210CrossRefGoogle Scholar
  26. 26.
    Lim CH, Mohammed IY, Abakr YA, Kazi FK, Yusup S, Lam HL (2016) Novel input-output prediction approach for biomass pyrolysis. J Clean Prod 136:51–61CrossRefGoogle Scholar
  27. 27.
    Talukdar J, Kalita MC, Goswami BC (2013) Characterization of the biofuel potential of a newly isolated strain of the microalga Botryococcus braunii Kützing from Assam, India. Bioresour Technol 149:268–275CrossRefGoogle Scholar
  28. 28.
    Bach QV, Chen WH (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol 246:88–100CrossRefGoogle Scholar
  29. 29.
    Ali I, Naqvi SR, Bahadar A (2018) Kinetic analysis of Botryococcus braunii pyrolysis using model-free and model fitting methods. Fuel 214:369–380CrossRefGoogle Scholar
  30. 30.
    Azizi K, Moraveji MK, Najafabadi HA (2017) Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol 243:481–491CrossRefGoogle Scholar
  31. 31.
    Mohammed IY (2017) Pyrolysis of Napier grass to bio-oil and catalytic upgrading to high grade biofuel. University of Nottingham, Doctoral dissertationGoogle Scholar
  32. 32.
    Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyser. Bioresour Technol 101:359–365CrossRefGoogle Scholar
  33. 33.
    Biller P, Ross AB (2014) Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res 6:91–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Isah Yakub Mohammed
    • 1
    • 2
  • Zubainatu Abba
    • 3
  • Hazel Monica Matias-Peralta
    • 3
  • Yousif Abdalla Abakr
    • 1
  • Siti Fatimah Zahrah Mohammad Fuzi
    • 3
  1. 1.Department of Mechanical, Manufacturing and Material EngineeringThe University of Nottingham Malaysia CampusSemenyihMalaysia
  2. 2.Department of Chemical EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  3. 3.Department of Technology and Heritage, Faculty of Science, Technology and Human DevelopmentUniversiti Tun Hussein OnnBatu PahatMalaysia

Personalised recommendations