Advertisement

Biomass Conversion and Biorefinery

, Volume 9, Issue 1, pp 201–212 | Cite as

Combined removal of particulate matter and nitrogen oxides from the exhaust gas of small-scale biomass combustion

  • M. KönigEmail author
  • K. Eisinger
  • I. Hartmann
  • M. Müller
Original Article
  • 198 Downloads

Abstract

The utilization of various solid biofuels in combustion plants often requires the application of secondary emission reduction measures in order to meet legal requirements. Since common multi-stage exhaust cleaning methods are too expensive for the application in decentral biomass combustion, new approaches have to be investigated which can be applied economically in small- and medium-sized plants. The combined removal of particulate and gaseous emissions in one unit can save investment and operation costs. In this context, a method for simultaneous reduction of particulate matter (PM) and nitrogen oxides (NOX) was developed and tested. The investigations focused on the alignment of the system components and the determination of optimal operating parameters for use in decentralized biomass furnaces. Experiments with wood chips and different non-woody biomass pellets at a 120-kW pilot plant showed significant reduction of PM and NOX. There is still a need for optimization with regard to the NH3 slip and the degree of particle separation.

Keywords

SCR NOX PM Biogenic residues 

Notes

Acknowledgements

This research work was kindly supported by the German federal ministry for economic affairs and energy. The exhaust gas cleaning system was developed in collaboration with two medium-sized mechanical engineering companies (Dr. Weigel Anlagenbau GmbH and ITB Industrietechnik Barleben GmbH) and the IFF Fraunhofer Research Center from Magdeburg.

References

  1. 1.
    Zeldovich J (1946) The oxidation of nitrogen in combustion and explosions. Acta Physiochimica 21:577Google Scholar
  2. 2.
    Kaltschmitt M, Hartmann H (2009) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Joos F (2006) Technische Verbrennung. Springer, BerlinGoogle Scholar
  4. 4.
    Nussbaumer T (1997) Verbrennung und Vergasung von Energiegras und Feldholz. Bundesamt für Energiewirtschaft, BernGoogle Scholar
  5. 5.
    Launhardt T (2002) Umweltrelevante Einflüsse bei der thermischen Nutzung fester Biomasse in Kleinanlagen, Dissertation, Technische Universität MünchenGoogle Scholar
  6. 6.
    Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRefGoogle Scholar
  7. 7.
    Olave RJ, Forbes EGA, Johnston CR, Relf J (2017) Particulate and gaseous emissions from different wood fuels during combustion in a small-scale biomass heating system. Atmos Environ 157:49–58CrossRefGoogle Scholar
  8. 8.
    Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289CrossRefGoogle Scholar
  9. 9.
    Loo SV, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, LondonGoogle Scholar
  10. 10.
    DIRECTIVE (EU) 2001/81 (2001) Directive on national emission ceilings for certain atmospheric pollutantsGoogle Scholar
  11. 11.
    DIRECTIVE (EU) 2015/2193 (2015) Directive on the limitation of emissions of certain pollutants into the air from medium combustion plantsGoogle Scholar
  12. 12.
    TA Luft 2002 (2002) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft) Vom 24. Juli 2002, Inkraftgetreten am 1.10.2002, Carl Heymanns VerlagGoogle Scholar
  13. 13.
    Draft of TA Luft (2016) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft), Federal Ministry for the Environment, Nature Conservation, Construction and Nuclear SafetyGoogle Scholar
  14. 14.
    Beckmann M (2011) Beschreibung unterschiedlicher Techniken und deren Entwicklungspotentiale zur Minderung von Stickstoffoxiden im Abgas von Abfallverbrennungsanlagen und Ersatzbrennstoff-Kraftwerken hinsichtlich Leistungsfähigkeit. Kosten und Energieverbrauch, Umweltbundesamt, Dessau-RosslauGoogle Scholar
  15. 15.
    García-Bordejé E, Pinilla JL, Lázaro MJ, Moliner R, Fierro JLG (2005) Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. J Catal 233:166–175CrossRefGoogle Scholar
  16. 16.
    Bai H, Yu Lee T (2016) Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: a review. Environ Sci 3(2):261–289Google Scholar
  17. 17.
    Heck RM, Farrauto RJ, Gulati ST (2009) Catalytic air pollution control: commercial technology. Wiley, New JerseyCrossRefGoogle Scholar
  18. 18.
    Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J (2014) Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel. Environ Sci Technol 48:10354–10362CrossRefGoogle Scholar
  19. 19.
    Cheng X, Bi XT (2014) A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology 16:1–18CrossRefGoogle Scholar
  20. 20.
    Liu Z, Woo SI (2006) Recent advances in catalytic DeNOX science and technology. Catal Rev 48(1):43–89CrossRefGoogle Scholar
  21. 21.
    Kim YJ, Kwon HJ, Heo I, Nam I-S, Cho BK, Choung JW, Cha M-S, Yeo GK (2012) Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Appl Catal B Environ 126:9–21CrossRefGoogle Scholar
  22. 22.
    Yao X, Kong T, Yu S, Li L, Yang F, Dong L (2017) Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Appl Surf Sci 402:208–217CrossRefGoogle Scholar
  23. 23.
    Liu C, Shi J-W, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A Gen 522:54–69CrossRefGoogle Scholar
  24. 24.
    Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15CrossRefGoogle Scholar
  25. 25.
    Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53CrossRefGoogle Scholar
  26. 26.
    Jo YB, Cha JS, Ko JH, Shin MC, Park SH, Jeon J-K, Kim S-S, Park Y-K (2011) NH3 selective catalytic reduction (SCR) of nitrogen oxides (NOx) over activated sewage sludge char. Korean J Chem Eng 28:106–113CrossRefGoogle Scholar
  27. 27.
    ISO 22241-1:2006 (2006) Diesel engines—NOx reduction agent AUS 32—part 1: quality requirementsGoogle Scholar
  28. 28.
    Johannessen T, Schmidt H, Svagin J, Johansen J, Oechsle J, Bradley R (2008) Ammonia storage and delivery systems for automotive NOx aftertreatment. SAE Technical Paper, WarrendaleGoogle Scholar
  29. 29.
    Liu F, He H, Zhang C, Shan W, Shi X (2011) Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catal Today 175:18–25CrossRefGoogle Scholar
  30. 30.
    Zuo J, Chen Z, Wang F, Yu Y, Wang L, Li X (2014) Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Ind Eng Chem Res 53:2647–2655CrossRefGoogle Scholar
  31. 31.
    Shen B, Liu T, Zhao N, Yang X, Deng L (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J Environ Sci China 22:1447–1454CrossRefGoogle Scholar
  32. 32.
    Magnusson M, Fridell E, Ingelsten HH (2012) The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl Catal B Environ 111:20–26CrossRefGoogle Scholar
  33. 33.
    Zhao K, Han W, Lu G, Lu J, Tang Z, Zhen X (2016) Promotion of redox and stability features of doped Ce–W–Ti for NH3-SCR reaction over a wide temperature range. Appl Surf Sci 379:316–322CrossRefGoogle Scholar
  34. 34.
    Fang N, Guo J, Shu S, Luo H, Chu Y, Li J (2017) Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem Eng J 325:114–123CrossRefGoogle Scholar
  35. 35.
    Ness SR, Dunham GE, Weber GF, Ludlow DK (1995) SCR catalyst-coated fabric filters for simultaneous NOx and high-temperature particulate control. Environ Prog 14:69–74CrossRefGoogle Scholar
  36. 36.
    Park Y-O, Lee K-W, Rhee Y-W (2009) Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx. J Ind Eng Chem 15:36–39CrossRefGoogle Scholar
  37. 37.
    Hackel PM (2007) Katalytische Umsetzung von Rauchgaskomponenten in imprägnierten kornkeramischen Filterelementen. Karlsruhe, Experimentelle und rechnerische Untersuchungen, Universitätsverlag KarlsruheGoogle Scholar
  38. 38.
    Heidenreich S, Nacken M, Hackel M, Schaub G (2008) Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams. Powder Technol 180:86–90CrossRefGoogle Scholar
  39. 39.
    Plinke M, Sassa R, Mortimer W, Brinckman G (1997) Catalytic filter material and method of making same, WO/1997/006877Google Scholar
  40. 40.
    Guan B, Zhan R, Lin H, Huang Z (2014) Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl Therm Eng 66:395–414CrossRefGoogle Scholar
  41. 41.
    EN 303-5:2012 (2012) Heating boilers—part 5: heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW—terminology, requirements, testing and markingGoogle Scholar
  42. 42.
    Strauß K (2013) Kraftwerkstechnik: zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. Springer, BerlinGoogle Scholar
  43. 43.
    Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: chemical and mechanistic aspects. Catal Today 107–108:139–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. König
    • 1
    Email author
  • K. Eisinger
    • 1
  • I. Hartmann
    • 1
  • M. Müller
    • 1
  1. 1.DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbHLeipzigGermany

Personalised recommendations