Biomass Conversion and Biorefinery

, Volume 7, Issue 2, pp 247–274 | Cite as

Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review

  • David SteinbachEmail author
  • Andrea Kruse
  • Jörg Sauer
Review Article


Lignocellulosic biomasses are strongly connected composites of cellulose, hemicelluloses, and lignin. A pretreatment is required in order to make these components available for their later conversion into chemicals. At this point, two strategies have to be considered: to either produce chemicals via microorganism or enzymes (1), or by chemical conversion (2). The focus of this article is the second strategy, which is chemical conversion, performed in water to produce the final products furfural and 5-hydroxymethylfurfural (HMF). Reviewed first is the composition of cellulose and hemicelluloses as well as their degradation chemistry in water. Then, fundamental modes of action and process parameters of pretreatment methods in aqueous solution are summarized. The pretreatment methods discussed here are steam explosion, treatment with hot liquid water, diluted and concentrated acids, as well as alkaline solutions. Finally, the advantages and disadvantages of these pretreatments are discussed for lignocellulosic biomass.


Pretreatment Lignocellulosic biomass 5-Hydroxymethylfurfural Furfural Hydrolysis Hydrothermal 



This work was financially supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (FNR project number 22027811) based on a decision of the German Bundestag. We also thank Diego López Barreiro for helpful discussions.


  1. 1.
    Goldstein I (1981) Organic chemicals from biomass. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Fischmeister C, Bruneau C, Vigier K, Jerôme F (2012) Catalytic conversion of biosourced raw materials: homogeneous catalysis. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: from biomass to chemicals and fuels. De Gruyter, BerlinGoogle Scholar
  3. 3.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  4. 4.
    Schultz TP, Templeton MC, Biermann CJ, Mcginnis GD (1984) Steam explosion of mixed hardwood chips, rice hulls, corn stalks, and sugar-cane bagasse. J Agr Food Chem 32(5):1166–1172. doi: 10.1021/Jf00125a058 CrossRefGoogle Scholar
  5. 5.
    Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos T R Soc A 321(1561):523–536. doi: 10.1098/rsta.1987.0029 CrossRefGoogle Scholar
  6. 6.
    Rabinovich ML (2010) Wood hydrolysis industry in the Soviet Union and Russia: a mini-review. Cell Chem Technol 44(4–6):173–186Google Scholar
  7. 7.
    Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering 2(3)Google Scholar
  8. 8.
    Hall JA, Saeman JF, Harris JF (1956) Wood saccharification: a summary statement. Unasylva 10(1):7–16Google Scholar
  9. 9.
    Fan L, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  10. 10.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi: 10.1039/b922014c CrossRefGoogle Scholar
  11. 11.
    Kruse A, Dahmen N (2015) Water—a magic solvent for biomass conversion. J Supercrit Fluid 96:36–45. doi: 10.1016/j.supflu.2014.09.038 CrossRefGoogle Scholar
  12. 12.
    Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—2. Degradation reactions. J Supercrit Fluid 41(3):361–379. doi: 10.1016/j.supflu.2006.12.006 CrossRefGoogle Scholar
  13. 13.
    Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—properties and synthesis reactions. J Supercrit Fluid 39(3):362–380. doi: 10.1016/j.supflu.2006.03.016 CrossRefGoogle Scholar
  14. 14.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841. doi: 10.1016/0079-6700(94)90033-7 CrossRefGoogle Scholar
  15. 15.
    Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nov. 26(6):863–871. doi: 10.1590/S0100-40422003000600015
  16. 16.
    Harmsen P, Huijgen W, Lopez L, Bakker R (2010) Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass Energy Research Centre of the Netherlands, Wageningen University, ReportGoogle Scholar
  17. 17.
    Krässig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Mohring M, Schlosser H (2000) Cellulose. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, New YorkGoogle Scholar
  18. 18.
    Salak Asghari F, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind Eng Chem Res 45(7):2163–2173. doi: 10.1021/ie051088y CrossRefGoogle Scholar
  19. 19.
    Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energ Environ Sci 1(1):32–65. doi: 10.1039/B810100k CrossRefGoogle Scholar
  20. 20.
    van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597. doi: 10.1021/Cr300182k CrossRefGoogle Scholar
  21. 21.
    van Dam HE, Kieboom APG, van Bekkum H (1986) The conversion of fructose and glucose in acidic media-formation of hydroxymethylfurfural. Starch-Starke 38(3):95–101. doi: 10.1002/star.19860380308 CrossRefGoogle Scholar
  22. 22.
    Cottier L, Descotes G (1991) 5-Hydroxymethylfurfural syntheses and chemical transformations. Trends in Heterocyclic Chemistry 2:233–248Google Scholar
  23. 23.
    Serrano D, Coronado J, Melero J (2012) Conversion of cellulose and hemicellulose into platform molecules: chemical routes. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: from biomass to chemicals and fuels. De Gruyter, BerlinGoogle Scholar
  24. 24.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi: 10.1021/Cr050989d CrossRefGoogle Scholar
  25. 25.
    Teong SP, Yi GS, Zhang YG (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16(4):2015–2026. doi: 10.1039/C3gc42018c CrossRefGoogle Scholar
  26. 26.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793. doi: 10.1039/C0gc00401d CrossRefGoogle Scholar
  27. 27.
    Antal MJ, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohyd Res 199(1):91–109. doi: 10.1016/0008-6215(90)84096-D CrossRefGoogle Scholar
  28. 28.
    Bicker M (2005) Stoffliche Nutzung von Biomasse mit Hilfe überkritischer Fluide. Dissertation, TU DarmstadtGoogle Scholar
  29. 29.
    Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. ARKIVOC 2(6):17–54Google Scholar
  30. 30.
    Lichtenthaler F, Boettcher A (1993) Zum Synthesepotential von Ketosen: Vielseitig verwendbare Zwischenprodukte aus D-Fructose, L-Sorbose und D-Isomaltulose. In: Eggersdorfer M, Warwel S, Wulff G (eds) Nachwachsende Rohstoffe: Perspektiven für die Chemie VCH, WeinheimGoogle Scholar
  31. 31.
    Rapp K, Daub J (1993) Herstellung und Derivatisierung von 5-Hydroxymethylfurfural. In: Eggersdorfer M, Warwel S, Wulff G (eds) Nachwachsende Rohstoffe: Perspektiven für die Chemie VCH, WeinheimGoogle Scholar
  32. 32.
    Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohyd Res 340(12):1925–1930. doi: 10.1016/j.carres.2005.06.017 CrossRefGoogle Scholar
  33. 33.
    Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Reactions of C-5 and C-6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel 89(10):2873–2880. doi: 10.1016/j.fuel.2010.03.015 CrossRefGoogle Scholar
  34. 34.
    Lecomte J, Finiels A, Moreau C (2002) Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites. Starch-Starke 54(2):75–79. doi: 10.1002/1521-379x(200202)54:2<75::Aid-Star75>3.0.Co;2-F CrossRefGoogle Scholar
  35. 35.
    Moreau C, Durand R, Roux A, Tichit D (2000) Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Appl Catal a-Gen 193(1–2):257–264. doi: 10.1016/S0926-860x(99)00435-4 CrossRefGoogle Scholar
  36. 36.
    Weisgerber L, Palkovits S, Palkovits R (2013) Development of a reactor setup for continuous dehydration of carbohydrates. Chem-Ing-Tech 85(4):512–515. doi: 10.1002/cite.201200203 CrossRefGoogle Scholar
  37. 37.
    Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-Hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293. doi: 10.1021/ef3007454 CrossRefGoogle Scholar
  38. 38.
    Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25(10):4745–4755. doi: 10.1021/ef2010157 CrossRefGoogle Scholar
  39. 39.
    van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758. doi: 10.1002/cssc.201300332 CrossRefGoogle Scholar
  40. 40.
    Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The Biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Biorefineries-industrial processes and products. Wiley-VCH, New York, pp 139–164Google Scholar
  41. 41.
    Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Sugar series, vol 13. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Thompson NS (2000) Hemicellulose. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. doi: 10.1002/0471238961.0805130920081513.a01 Google Scholar
  43. 43.
    Thompson NS (1983) Hemicellulose as a biomass resource. In: Soltes EJ (ed) Wood and agricultural residues. Academic, New York, pp 101–119. doi: 10.1016/B978-0-12-654560-9.50010-X CrossRefGoogle Scholar
  44. 44.
    Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. W. de Gruyter, BerlinGoogle Scholar
  45. 45.
    Burke D, Kaufman P, McNeil M, Albersheim P (1974) The structure of plant cell walls: VI. A survey of the walls of suspension-cultured monocots. Plant Physiol 54(1):109–115CrossRefGoogle Scholar
  46. 46.
    Excoffier G, Toussaint B, Vignon MR (1991) Saccharification of steam-exploded poplar wood. Biotechnol Bioeng 38(11):1308–1317. doi: 10.1002/bit.260381108 CrossRefGoogle Scholar
  47. 47.
    Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98(10):2034–2042. doi: 10.1016/j.biortech.2006.08.006 CrossRefGoogle Scholar
  48. 48.
    Montané D, Salvadó J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22(4):295–304. doi: 10.1016/S0961-9534(02)00007-7 CrossRefGoogle Scholar
  49. 49.
    Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54. doi: 10.1039/c3gc41351a CrossRefGoogle Scholar
  50. 50.
    De Jong W, Marcotullio G (2010) Overview of Biorefineries based on Co-production of furfural, existing concepts and novel developments. Int J Chem React Eng 8(1)Google Scholar
  51. 51.
    Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. Green Chem 12(10):1739–1746. doi: 10.1039/b927424c CrossRefGoogle Scholar
  52. 52.
    Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Comparison of the influence of a Lewis acid AlCl3 and a Bronsted acid HCl on the organosolv pulping of beech wood. Green Chem 16(3):1569–1578. doi: 10.1039/c3gc42050g CrossRefGoogle Scholar
  53. 53.
    Hurd CD, Isenhour LL (1932) Pentose reactions. I. Furfural formation. J Am Chem Soc 54(1):317–330. doi: 10.1021/ja01340a048 CrossRefGoogle Scholar
  54. 54.
    Antal MJ Jr, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from d-xylose. Carbohyd Res 217:71–85. doi: 10.1016/0008-6215(91)84118-X CrossRefGoogle Scholar
  55. 55.
    Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic-acid formation during hydrothermal, acidic and alkaline-degradation of deuterium-xylose. Monatsh Chem 123(6–7):547–556. doi: 10.1007/Bf00816848 CrossRefGoogle Scholar
  56. 56.
    Dunlop AP (1948) Furfural formation and behavior. Industrial & Engineering Chemistry 40(2):204–209. doi: 10.1021/ie50458a006 CrossRefGoogle Scholar
  57. 57.
    Williams DL, Dunlop AP (1948) Kinetics of furfural destruction in acidic aqueous media. Industrial & Engineering Chemistry 40(2):239–241. doi: 10.1021/ie50458a012 CrossRefGoogle Scholar
  58. 58.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. doi: 10.1021/Ie801542g CrossRefGoogle Scholar
  59. 59.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. doi: 10.1016/j.biortech.2009.11.093 CrossRefGoogle Scholar
  60. 60.
    Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169(1–3):329–338. doi: 10.1016/j.cej.2011.03.018 CrossRefGoogle Scholar
  61. 61.
    Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937. doi: 10.1126/science.1126337 CrossRefGoogle Scholar
  62. 62.
    Schultz TP, Rughani JR, Mcginnis GD (1989) Comparison of the pretreatment of sweetgum and white oak by the steam explosion and rash processes. Appl Biochem Biotech 20-21:9–27. doi: 10.1007/Bf02936470 CrossRefGoogle Scholar
  63. 63.
    Schultz TP, Biermann CJ, Mcginnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Prod Rd 22(2):344–348. doi: 10.1021/I300010a034 CrossRefGoogle Scholar
  64. 64.
    Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluid 46(3):299–321. doi: 10.1016/j.supflu.2008.01.018 CrossRefGoogle Scholar
  65. 65.
    Biermann CJ, Schultz TP, Mcginnis GD (1984) Rapid steam hydrolysis extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4(1):111–128. doi: 10.1080/02773818408062286 CrossRefGoogle Scholar
  66. 66.
    Spalt H (1977) Chemical changes in wood associated with wood fiberboard manufacture. In: Goldstein I (ed) Wood Technology: chemical aspects, ACS Symposium Series, Washington, p 195Google Scholar
  67. 67.
    Schwald W, Breuil C, Brownell HH, Chan M, Saddler JN (1989) Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations. Appl Biochem Biotech 20-1:29–44. doi: 10.1007/Bf02936471 CrossRefGoogle Scholar
  68. 68.
    Zimbardi F, Viola E, Nanna F, Larocca E, Cardinale M, Barisano D (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind Crop Prod 26(2):195–206. doi: 10.1016/j.indcrop.2007.03.005 CrossRefGoogle Scholar
  69. 69.
    Martin-Sampedro R, Revilla E, Villar JC, Eugenio ME (2014) Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment. Bioresour Technol 167:186–191. doi: 10.1016/j.biortech.2014.06.027 CrossRefGoogle Scholar
  70. 70.
    Pielhop T, Amgarten J, von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9. doi: 10.1186/S13068-016-0567-1
  71. 71.
    Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood-effect of chip size, acid, moisture-content and pressure-drop. Biotechnol Bioeng 28(6):792–801. doi: 10.1002/bit.260280604 CrossRefGoogle Scholar
  72. 72.
    De Long E (1983) Method of rendering lignin separable from cellulose and hemicellulose and the product so produced. Canada Patent CA1141376Google Scholar
  73. 73.
    Sudo K, Shimizu K, Ishii T, Fujii T, Nagasawa S (1986) Enzymatic-hydrolysis of woods 9. Catalyzed steam explosion of softwood. Holzforschung 40(6):339–345. doi: 10.1515/hfsg.1986.40.6.339 CrossRefGoogle Scholar
  74. 74.
    Montané D, Overend RP, Chornet E (1998) Kinetic models for non-homogeneous complex systems with a time-dependent rate constant. Can J Chem Eng 76(1):58–68. doi: 10.1002/cjce.5450760108 CrossRefGoogle Scholar
  75. 75.
    Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29(2):156–162. doi: 10.1021/ie00098a003 CrossRefGoogle Scholar
  76. 76.
    Zhang TY, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohyd Polym 92(1):334–344. doi: 10.1016/j.carbpol.2012.09.070 CrossRefGoogle Scholar
  77. 77.
    Focher B, Marzetti A, Beltrame PL, Avella M (1998) Steam exploded biomass for the preparation of conventional and advanced biopolymer-based materials. Biomass Bioenerg 14(3):187–194. doi: 10.1016/S0961-9534(97)10046-0 CrossRefGoogle Scholar
  78. 78.
    Dekker RFH, Wallis AFA (1983) Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis steam explosion. Biotechnol Bioeng 25(12):3027–3048. doi: 10.1002/bit.260251218 CrossRefGoogle Scholar
  79. 79.
    Shimizu K, Sudo K, Ono H, Ishihara M, Fujii T, Hishiyama S (1998) Integrated process for total utilization of wood components by steam-explosion pretreatment. Biomass Bioenerg 14(3):195–203. doi: 10.1016/S0961-9534(97)10044-7 CrossRefGoogle Scholar
  80. 80.
    Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenerg 25(3):301–308. doi: 10.1016/S0961-9534(03)00017-5 CrossRefGoogle Scholar
  81. 81.
    Springer EL, Harris JF (1982) Pre-hydrolysis of aspen wood with water and with dilute aqueous sulfuric-acid. Svensk Papperstidning 85(15):152–154Google Scholar
  82. 82.
    Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA (1988) The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31(5):447–456. doi: 10.1002/bit.260310509 CrossRefGoogle Scholar
  83. 83.
    Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55(1):1–33. doi: 10.1016/0960-8524(95)00122-0 CrossRefGoogle Scholar
  84. 84.
    Heitz M, Capekmenard E, Koeberle PG, Gagne J, Chornet E, Overend RP, Taylor JD, Yu E (1991) Fractionation of Populus-Tremuloides at the pilot-plant scale-optimization of steam pretreatment conditions using the stake-II technology. Bioresour Technol 35(1):23–32. doi: 10.1016/0960-8524(91)90078-X CrossRefGoogle Scholar
  85. 85.
    Ballesteros I, Oliva JM, Navarro AA, Gonzalez A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotech 84-86:97–110. doi: 10.1385/Abab:84-86:1-9:97 CrossRefGoogle Scholar
  86. 86.
    Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26(10):1219–1222. doi: 10.1002/bit.260261010 CrossRefGoogle Scholar
  87. 87.
    Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore-size and enzymatic-hydrolysis of poplar. Enzyme Microb Tech 8(5):274–280. doi: 10.1016/0141-0229(86)90021-9 CrossRefGoogle Scholar
  88. 88.
    Toussaint B, Excoffier G, Vignon MR (1991) Effect of steam explosion treatment on the physicochemical characteristics and enzymatic-hydrolysis of poplar cell-wall components. Anim Feed Sci Tech 32(1–3):235–242. doi: 10.1016/0377-8401(91)90028-Q CrossRefGoogle Scholar
  89. 89.
    Lopez-Linares JC, Ballesteros I, Touran J, Cara C, Castro E, Ballesteros M, Romero I (2015) Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresour Technol 190:97–105. doi: 10.1016/j.biortech.2015.04.066 CrossRefGoogle Scholar
  90. 90.
    Agudelo RA, Garcia-Aparicio MP, Gorgens JF (2016) Steam explosion pretreatment of triticale (X Triticosecale Wittmack) straw for sugar production. New Biotechnol 33(1):153–163. doi: 10.1016/j.nbt.2015.10.001 CrossRefGoogle Scholar
  91. 91.
    Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenerg 14(3):277–287. doi: 10.1016/S0961-9534(97)10038-1 CrossRefGoogle Scholar
  92. 92.
    Duangwang S, Ruengpeerakul T, Cheirsilp B, Yamsaengsung R, Sangwichien C (2016) Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production. Bioresour Technol 203:252–258. doi: 10.1016/j.biortech.2015.12.065 CrossRefGoogle Scholar
  93. 93.
    Snyder FH (1958) Preparation of hydroxymethylfurfural from cellulosic materials. United States Patent 2851468Google Scholar
  94. 94.
    Weiss ND, Nagle NJ, Tucker MP, Elander RT (2009) High xylose yields from dilute acid pretreatment of corn stover under process-relevant conditions. Appl Biochem Biotech 155(1–3):418–428. doi: 10.1007/s12010-008-8490-y Google Scholar
  95. 95.
    Fan XG, Cheng G, Zhang HJ, Li MH, Wang SZ, Yuan QP (2014) Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohyd Polym 114:21–26. doi: 10.1016/j.carbpol.2014.07.051 CrossRefGoogle Scholar
  96. 96.
    Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86(2):105–115. doi: 10.1016/S0960-8524(02)00165-7 CrossRefGoogle Scholar
  97. 97.
    Eklund R, Galbe M, Zacchi G (1995) The influence of So2 and H2so4 impregnation of willow prior to steam pretreatment. Bioresour Technol 52(3):225–229. doi: 10.1016/0960-8524(95)00042-D CrossRefGoogle Scholar
  98. 98.
    Dietrichs HH, Puls J, Sinner M (1978) Potential of steaming hardwoods and straw for feed and food-production. Holzforschung 32(6):193–199. doi: 10.1515/hfsg.1978.32.6.193 CrossRefGoogle Scholar
  99. 99.
    Aoyama M, Seki K, Saito N (1995) Solubilization of bamboo grass xylan by steaming treatment. Holzforschung 49(3):193–196. doi: 10.1515/hfsg.1995.49.3.193 CrossRefGoogle Scholar
  100. 100.
    Turn SQ, Kinoshita CM, Kaar WE, Ishimura DM (1998) Measurements of gas phase carbon in steam explosion of biomass. Bioresour Technol 64(1):71–75. doi: 10.1016/S0960-8524(97)00144-2 CrossRefGoogle Scholar
  101. 101.
    Lloyd TA, Wyman CE (2004) Predicted effects of mineral neutralization and bisulfate formation on hydrogen ion concentration for dilute sulfuric acid pretreatment. Appl Biochem Biotech 113:1013–1022CrossRefGoogle Scholar
  102. 102.
    Pitarelo AP, Szczerbowski D, Ndiaye PM, Zandona A, Ramos LP (2010) Steam explosion of cane bagasse using phosphoric acid as the pretreatment catalyst. J Biotechnol 150:S206–S207. doi: 10.1016/j.jbiotec.2010.09.017 CrossRefGoogle Scholar
  103. 103.
    Rughani J, Wasson L, Prewitt L, Mcginnis G (1992) Use of difunctional compounds during rapid steam hydrolysis (rash) pretreatment. J Wood Chem Technol 12(1):79–90. doi: 10.1080/02773819208545051 CrossRefGoogle Scholar
  104. 104.
    Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in Biorefineries. Chem-Ing-Tech 83(7):1016–1025. doi: 10.1002/cite.201100025 CrossRefGoogle Scholar
  105. 105.
    Bonn G, Pecina R, Burtscher E, Bobleter O (1984) Separation of wood degradation products by high-performance liquid-chromatography. J Chromatogr 287(1):215–221. doi: 10.1016/S0021-9673(01)87695-0 CrossRefGoogle Scholar
  106. 106.
    Energie aus Biomasse–Neue Wege zur integrierten Bioraffinerie –„BIORAFFINERIE2021“ (2013) Report.
  107. 107.
    Prutsch W (1989) Untersuchung des chemischen Aufschlusses pflanzlicher Biomasse unter hydrothermalen Bedingungen. PhD thesis, Universität Innsbruck, InnsbruckGoogle Scholar
  108. 108.
    Hirth J (2002) Verfahrensentwicklung zur Synthese von 5-Hydroxymethylfurfural und Kohlenhydratcarbonsäuren auf Basis nachwachsender Rohstoffe. PhD thesis, TU Darmstadt, DarmstadtGoogle Scholar
  109. 109.
    Zhuang XS, Wang W, Yu Q, Qi W, Wang Q, Tan XS, Zhou GX, Yuan ZH (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. doi: 10.1016/j.biortech.2015.08.051 CrossRefGoogle Scholar
  110. 110.
    Mittal A, Chatterjee SG, Scott GM, Amidon TE (2009) Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: reaction kinetics and mass transfer. Chem Eng Sci 64(13):3031–3041. doi: 10.1016/j.ces.2009.03.011 CrossRefGoogle Scholar
  111. 111.
    Marzialetti T, Olarte MBV, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of loblolly pine: a comprehensive approach. Ind Eng Chem Res 47(19):7131–7140. doi: 10.1021/Ie800455f CrossRefGoogle Scholar
  112. 112.
    Aronovsky SI, Gortner RA (1930) The cooking process: role of water in the cooking of wood. Industrial & Engineering Chemistry 22(3):264–274. doi: 10.1021/ie50243a017 CrossRefGoogle Scholar
  113. 113.
    Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993. doi: 10.1016/j.biortech.2005.01.013 CrossRefGoogle Scholar
  114. 114.
    Cara C, Romero I, Oliva JM, Saez F, Castro E (2007) Liquid hot water pretreatment of olive tree pruning residues. Appl Biochem Biotech 137:379–394. doi: 10.1007/s12010-007-9066-y Google Scholar
  115. 115.
    Zakaria MR, Hirata S, Hassan MA (2015) Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresour Technol 176:142–148. doi: 10.1016/j.biortech.2014.11.027 CrossRefGoogle Scholar
  116. 116.
    Pińkowska H, Wolak P (2013) Hydrothermal decomposition of rapeseed straw in subcritical water. Proposal of three-step treatment. Fuel 113:340–346. doi: 10.1016/j.fuel.2013.05.088 CrossRefGoogle Scholar
  117. 117.
    Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41(6):1454–1461. doi: 10.1021/ie001025+ CrossRefGoogle Scholar
  118. 118.
    Deng AJ, Ren JL, Li HL, Peng F, Sun RC (2015) Corncob lignocellulose for the production of furfural by hydrothermal pretreatment and heterogeneous catalytic process. RSC Adv 5(74):60264–60272. doi: 10.1039/c5ra10472f CrossRefGoogle Scholar
  119. 119.
    Mohan M, Banerjee T, Goud VV (2015) Hydrolysis of bamboo biomass by subcritical water treatment. Bioresour Technol 191:244–252. doi: 10.1016/j.biortech.2015.05.010 CrossRefGoogle Scholar
  120. 120.
    Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157–1161. doi: 10.1021/Ie00004a026 CrossRefGoogle Scholar
  121. 121.
    Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour Technol 99(10):4221–4228. doi: 10.1016/j.biortech.2007.08.054 CrossRefGoogle Scholar
  122. 122.
    Yang B, Wyman CE (2008) Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresour Technol 99(13):5756–5762. doi: 10.1016/j.biortech.2007.10.054 CrossRefGoogle Scholar
  123. 123.
    Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 42(21):5409–5416. doi: 10.1021/ie030458k CrossRefGoogle Scholar
  124. 124.
    Braconnot H (1819) Verwandlungen des Holzstoffs mittelst Schwefelsäure in Gummi, Zucker und eine eigne Säure, und mittelst Kali in Ulmin. Ann Phys 63(12):347–371. doi: 10.1002/andp.18190631202 CrossRefGoogle Scholar
  125. 125.
    Neuman J (1910) Kritische Studien über Hydrolyse der Cellulose und des Holzes. Holze & PahlGoogle Scholar
  126. 126.
    Wenzl HFJ (1954) Chemie und Technik der Säurehydrolyse des Holzes. I. Chemische Betrachtungen. Holzforschung 8(2):33–41CrossRefGoogle Scholar
  127. 127.
    Wenzl HFJ (1954) Chemie und Technik der Säurehydrolyse des Holzes. II. Die technischen Verfahren der Holzhydrolyse. Holzforschung 8(4):103–116CrossRefGoogle Scholar
  128. 128.
    Demuth R (1913) Über die Gewinnung von Spiritus aus Holz. Angew Chem-Ger Edit 26(101):786–792. doi: 10.1002/ange.191302610102 CrossRefGoogle Scholar
  129. 129.
    Sherrard EC, Kressman FW (1945) Review of processes in the United States prior to World War II. Industrial & Engineering Chemistry 37(1):5–8. doi: 10.1021/ie50421a003 CrossRefGoogle Scholar
  130. 130.
    Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. Industrial & Engineering Chemistry Analytical Edition 17(1):35–37. doi: 10.1021/i560137a008 CrossRefGoogle Scholar
  131. 131.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of Structural Carbohydrates and Lignin in Biomass, Report. National Renewable Energy Laboratory, Golden, ColoradoGoogle Scholar
  132. 132.
    Bergius F (1937) Conversion of wood to carbohydrates. Industrial & Engineering Chemistry 29(3):247–253. doi: 10.1021/ie50327a002 CrossRefGoogle Scholar
  133. 133.
    Groenestijn J, Hazewinkel J, Bakker R (2006) Pretreatment of lignocellulose with biological acid recycling (Biosulfurol process). International Sugar Journal 110(1319)Google Scholar
  134. 134.
    Santana G (2010) BlueFire Renewables, Inc. New Earth Capital Group, ReportGoogle Scholar
  135. 135.
    Plow RH, Saeman JF, Turner HD, Sherrard EC (1945) Rotary digester in wood saccharification. Industrial & Engineering Chemistry 37(1):36–43. doi: 10.1021/ie50421a008 CrossRefGoogle Scholar
  136. 136.
    Harris EE, Beglinger E, Hajny GJ, Sherrard EC (1945) Hydrolysis of wood-treatment with sulfuric acid in a stationary digester. Industrial & Engineering Chemistry 37(1):12–23. doi: 10.1021/ie50421a005 CrossRefGoogle Scholar
  137. 137.
    Körner T (1907) Zur Frage der Bildung von Alkohol aus cellulosehaltigen Stoffen. Buchdruckerei Robert NoskeGoogle Scholar
  138. 138.
    Harris EE, Kline AA (1949) Hydrolysis of wood cellulose with hydrochloric acid and sulfur dioxide and the decomposition of its hydrolytic products. J Phys Colloid Chem 53(3):344–351. doi: 10.1021/J150468a003 CrossRefGoogle Scholar
  139. 139.
    Galletti A, Antonetti C (2012) Biomass pretreatment: separation of cellulose, hemicellulose, and lignin - existing technologies and perspectives. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: from biomass to chemicals and fuels. De Gruyter, BerlinGoogle Scholar
  140. 140.
    McWilliams RC, van Walsum GP (2002) Comparison of aspen wood hydrolysates produced by pretreatment with liquid hot water and carbonic acid. Appl Biochem Biotech 98:109–121. doi: 10.1385/Abab:98-100:1-9:109 CrossRefGoogle Scholar
  141. 141.
    van Walsum GP, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93(3):217–226. doi: 10.1016/j.biortech.2003.11.009 CrossRefGoogle Scholar
  142. 142.
    da Silva SPM, Morais ARC, Bogel-Lukasik R (2014) The CO2-assisted autohydrolysis of wheat straw. Green Chem 16(1):238–246. doi: 10.1039/C3gc41870g CrossRefGoogle Scholar
  143. 143.
    Marcotullio G, Krisanti E, Giuntoli J, de Jong W (2011) Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour Technol 102(10):5917–5923. doi: 10.1016/j.biortech.2011.02.092 CrossRefGoogle Scholar
  144. 144.
    Yat SC (2006) Kinetic Characterization for Pretreatment of Timber Varieties and Switchgrass using Diluted Acid Hydrolysis. Masterthesis, Michigan Technological UniversityGoogle Scholar
  145. 145.
    Yat SC, Berger A, Shonnard DR (2008) Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol 99(9):3855–3863. doi: 10.1016/j.biortech.2007.06.046 CrossRefGoogle Scholar
  146. 146.
    Lopez Y, Garcia A, Karimi K, Taherzadeh MJ, Martin C (2010) Chemical characterisation and dilute-acid hydrolysis of rice hulls from an artisan mill. Bioresources 5(4):2268–2277Google Scholar
  147. 147.
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21(3):816–822. doi: 10.1021/Bp049564n CrossRefGoogle Scholar
  148. 148.
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. doi: 10.1016/j.procbio.2005.04.006 CrossRefGoogle Scholar
  149. 149.
    Rajan K, Carrier DJ (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenerg 62:222–227. doi: 10.1016/j.biombioe.2014.01.013 CrossRefGoogle Scholar
  150. 150.
    Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotech 98:49–58. doi: 10.1385/Abab:98-100:1-9:49 CrossRefGoogle Scholar
  151. 151.
    Martin EM, Bunnell KA, Lau CS, Pelkki MH, Patterson DW, Clausen EC, Smith JA, Carrier DJ (2011) Hot water and dilute acid pretreatment of high and low specific gravity Populus deltoides clones. J Ind Microbiol Biot 38(2):355–361. doi: 10.1007/s10295-010-0782-x CrossRefGoogle Scholar
  152. 152.
    Grethlein HE, Allen DC, Converse AO (1984) A comparative-study of the enzymatic-hydrolysis of acid-pretreated white-pine and mixed hardwood. Biotechnol Bioeng 26(12):1498–1505. doi: 10.1002/bit.260261215 CrossRefGoogle Scholar
  153. 153.
    Lopez F, Garcia MT, Feria MJ, Garcia JC, de Diego CM, Zamudio MAM, Diaz MJ (2014) Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem Eng J 240:195–201. doi: 10.1016/j.cej.2013.11.073 CrossRefGoogle Scholar
  154. 154.
    Rafiqul ISM, Sakinah AMM, Karim MR (2014) Production of xylose from meranti wood sawdust by dilute acid hydrolysis. Appl Biochem Biotech 174(2):542–555. doi: 10.1007/s12010-014-1059-z CrossRefGoogle Scholar
  155. 155.
    Qing Q, Huang MZ, He YC, Wang LQ, Zhang Y (2015) Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Appl Biochem Biotech 177(7):1493–1507. doi: 10.1007/s12010-015-1829-2 CrossRefGoogle Scholar
  156. 156.
    Dunning JW, Lathrop EC (1945) Saccharification of agricultural residues. Industrial & Engineering Chemistry 37(1):24–29. doi: 10.1021/ie50421a006 CrossRefGoogle Scholar
  157. 157.
    Bouza RJ, Gu ZR, Evans JH (2016) Screening conditions for acid pretreatment and enzymatic hydrolysis of empty fruit bunches. Ind Crop Prod 84:67–71. doi: 10.1016/j.indcrop.2016.01.041 CrossRefGoogle Scholar
  158. 158.
    Yan LS, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4(45):23492–23504. doi: 10.1039/c4ra01631a CrossRefGoogle Scholar
  159. 159.
    Pessoa A, Mancilha IM, Sato S (1997) Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz J Chem Eng 14(3)Google Scholar
  160. 160.
    Xu J, Thomsen MH, Thomsen AB (2009) Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid. J Biotechnol 139(4):300–305. doi: 10.1016/j.jbiotec.2008.12.017 CrossRefGoogle Scholar
  161. 161.
    Mittal A, Vinzant TB, Brunecky R, Black SK, Pilath HM, Himmel ME, Johnson DK (2015) Investigation of the role of lignin in biphasic xylan hydrolysis during dilute acid and organosolv pretreatment of corn stover. Green Chem 17(3):1546–1558. doi: 10.1039/c4gc02258k CrossRefGoogle Scholar
  162. 162.
    Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenerg 30(3):247–253. doi: 10.1016/j.biombioe.2005.11.015 CrossRefGoogle Scholar
  163. 163.
    Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohyd Res 345(15):2133–2138. doi: 10.1016/j.carres.2010.07.032 CrossRefGoogle Scholar
  164. 164.
    Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry 37(1):43–52. doi: 10.1021/ie50421a009 CrossRefGoogle Scholar
  165. 165.
    Xu J, Thomsen MH, Thomsen AB (2009) Pretreatment on corn stover with low concentration of formic acid. J Microbiol Biotechn 19(8):845–850. doi: 10.4014/Jmb.0809.514 Google Scholar
  166. 166.
    Rugg B (1980) The NYU continuous acid-hydrolysis process-hemicellulose utilization—preliminary data and comparative economics for ethanol-production. ACS, Div of Fuel Chem 25(4):270–280Google Scholar
  167. 167.
    Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK (2015) Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renew Energ 83:850–858. doi: 10.1016/j.renene.2015.05.033 CrossRefGoogle Scholar
  168. 168.
    Kim KH, Tucker MP, Nguyen QA (2002) Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18(3):489–494. doi: 10.1021/bp025503i CrossRefGoogle Scholar
  169. 169.
    Dashtban M, Gilbert A, Fatehi P (2012) Production of furfural: overview and challenges. J-For 2(4):44–53Google Scholar
  170. 170.
    Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89(1):2–10. doi: 10.1002/jctb.4168 CrossRefGoogle Scholar
  171. 171.
    Hasche RL (1945) By-products of wood saccharification. Industrial & Engineering Chemistry 37(1):52–54. doi: 10.1021/ie50421a010 CrossRefGoogle Scholar
  172. 172.
    Faith WL (1945) Development of the Scholler process in the United States. Industrial & Engineering Chemistry 37(1):9–11. doi: 10.1021/ie50421a004 CrossRefGoogle Scholar
  173. 173.
    Anderson J, Porteous A (1987) A review of developments in the acid-hydrolysis of cellulosic wastes. Proc Inst Mech Eng C J Mech Eng Sci 201(2):117–123CrossRefGoogle Scholar
  174. 174.
    Harris EE, Beglinger E (1946) Madison wood sugar process. Industrial & Engineering Chemistry 38(9):890–895. doi: 10.1021/ie50441a012 CrossRefGoogle Scholar
  175. 175.
    Gilbert N, Hobbs IA, Levine JD (1952) Hydrolysis of wood-using dilute sulfuric acid. Ind Eng Chem 44(7):1712–1720. doi: 10.1021/Ie50511a060 CrossRefGoogle Scholar
  176. 176.
    Presentation BioChemPlant (2016) BioChemPlant Ltd.
  177. 177.
    Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh MJ (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5(2):928–938Google Scholar
  178. 178.
    Bonn G, Binder H, Leonhard H, Bobleter O (1985) The alkaline-degradation of cellobiose to glucose and fructose. Monatsh Chem 116(8–9):961–971. doi: 10.1007/Bf00809189 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT), Institute for Catalysis Research and TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Agricultural Engineering, Conversion Technology and Life Cycle Assessment of Renewable ResourcesUniversity HohenheimStuttgartGermany

Personalised recommendations