Biomass Conversion and Biorefinery

, Volume 7, Issue 4, pp 487–494 | Cite as

Gasification characteristics of histidine and 4-methylimidazole under supercritical water conditions

  • Thachanan Samanmulya
  • Obie Farobie
  • Yukihiko MatsumuraEmail author
Original Article


In this study, gasification characteristics of histidine and 4-methylimidazole were investigated for the first time. A tubular flow reactor was employed, and experiments were conducted in the temperature range of 500–650 °C, at a fixed pressure of 25 MPa, with residence times of 86–119 s, and with 1.0 wt% aqueous solutions of histidine and 4-methylimidazole. The gaseous products were identified and quantified by gas chromatography (GC), and the aqueous phase was analyzed for total organic carbon (TOC). The gasification characteristics were compared with those of glycine and alanine, which represented the standard amino acid structure. The result showed that the carbon gasification efficiencies of both histidine and 4-methylimidazole increased with increasing reaction temperature. The gasification rate of 4-methylimidazole followed first-order kinetics and was explained well by the Arrhenius equation. The gasification rate for histidine could be predicted by the weighted summation of the adjusted gasification rates of glycine and 4-methylimidazole.


Biomass Amino acid Histidine 4-Methylimidazole Supercritical water gasification 



This study was supported by NEDO.


  1. 1.
    Antal M, Allen S, Schulman D, Xu X, Divilio R (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39(11):4040–4053CrossRefGoogle Scholar
  2. 2.
    Matsumura Y, Minowa T, Potic B, Kersten S, Prins W, van Swaaij W, van de Beld B, Elliott D, Neuenschwander G, Kruse A, Antal M (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass & Bioenergy 29(4):269–292CrossRefGoogle Scholar
  3. 3.
    Xu X, Matsumura Y, Stenberg J, Antal M (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res 35(8):2522–2530CrossRefGoogle Scholar
  4. 4.
    SHAW R, BRILL T, CLIFFORD A, ECKERT C, FRANCK E (1991) Supercritical water - A medium for Chemistry. Chemical & Engineering News 69(51):26–39CrossRefGoogle Scholar
  5. 5.
    Cansell F, Beslin P, Berdeu B (1998) Hydrothermal oxidation of model molecules and industrial wastes. Environ Prog 17(4):240–245CrossRefGoogle Scholar
  6. 6.
    Goto M, Nada T, Kodama A, Hirose T (1999) Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation. Ind Eng Chem Res 38(5):1863–1865CrossRefGoogle Scholar
  7. 7.
    Akiya N, Savage P (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102(8):2725–2750CrossRefGoogle Scholar
  8. 8.
    Bridgwater A (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102CrossRefGoogle Scholar
  9. 9.
    Kruse A, Gawlik A (2003) Biomass conversion in water at 330-410 degrees C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42(2):267–279CrossRefGoogle Scholar
  10. 10.
    Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Convers Manag 46(4):615–631CrossRefGoogle Scholar
  11. 11.
    Erkonak H, Sogut O, Akgun M (2008) Treatment of olive mill wastewater by supercritical water oxidation. J Supercrit Fluids 46(2):142–148CrossRefGoogle Scholar
  12. 12.
    Madenoglu T, Boukis N, Saglam M, Yuksel M (2011) Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrog Energy 36(22):14408–14415CrossRefGoogle Scholar
  13. 13.
    Matsumura Y, Hara S, Kaminaka K, Yamashita Y, Yoshida T, Inoue S, Kawai Y, Minowa T, Noguchi T, Shimizu Y (2013) Gasification rate of various biomass feedstocks in supercritical water. Journal of the Japan Petroleum Institute 56(1):1–10CrossRefGoogle Scholar
  14. 14.
    Yoshida T, Oshima Y, Matsumura Y (2004) Gasification of biomass model compounds and real biomass in supercritical water. Biomass & Bioenergy 26(1):71–78CrossRefGoogle Scholar
  15. 15.
    YU D, Aihara M, Antal M (1993) HYDROGEN-PRODUCTION BY STEAM REFORMING GLUCOSE IN SUPERCRITICAL WATER. Energy Fuel 7(5):574–577CrossRefGoogle Scholar
  16. 16.
    Mizan T, Savage P, Ziff R (1996) Temperature dependence of hydrogen bonding in supercritical water. J Phys Chem 100(1):403–408CrossRefGoogle Scholar
  17. 17.
    Matsumura Y, Xu X, Antal M (1997) Gasification characteristics of an activated carbon in supercritical water. Carbon 35(6):819–824CrossRefGoogle Scholar
  18. 18.
    Xu X, Antal M (1998) Gasification of sewage sludge and other biomass for hydrogen production in supercritical water. Environ Prog 17(4):215–220CrossRefGoogle Scholar
  19. 19.
    Minowa T, Inoue S (1999) Hydrogen production from biomass by catalytic gasification in hot compressed water. Renew Energy 16(1–4):1114–1117CrossRefGoogle Scholar
  20. 20.
    Kruse A, Meier D, Rimbrecht P, Schacht M (2000) Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39(12):4842–4848CrossRefGoogle Scholar
  21. 21.
    Yoshida T, Matsumura Y (2001) Gasification of cellulose, xylan, and lignin mixtures in supercritical water. Ind Eng Chem Res 40(23):5469–5474CrossRefGoogle Scholar
  22. 22.
    Lee I, Kim M, Ihm S (2002) Gasification of glucose in supercritical water. Ind Eng Chem Res 41(5):1182–1188CrossRefGoogle Scholar
  23. 23.
    Kruse A, Henningsen T, Sinag A, Pfeiffer J (2003) Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols. Ind Eng Chem Res 42(16):3711–3717CrossRefGoogle Scholar
  24. 24.
    Saisu M, Sato T, Watanabe M, Adschiri T, Arai K (2003) Conversion of lignin with supercritical water-phenol mixtures. Energy Fuel 17(4):922–928CrossRefGoogle Scholar
  25. 25.
    Hao X, Guo L, Mao X, Zhang X, Chen X (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrog Energy 28(1):55–64CrossRefGoogle Scholar
  26. 26.
    Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18(2):327–333CrossRefGoogle Scholar
  27. 27.
    Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningsen T (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. Comparison of different feedstocks. Ind Eng Chem Res 44(9):3013–3020CrossRefGoogle Scholar
  28. 28.
    Lu Y, Guo L, Ji C, Zhang X, Hao X, Yan Q (2006) Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrog Energy 31(7):822–831CrossRefGoogle Scholar
  29. 29.
    Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrog Energy 32(6):699–704CrossRefGoogle Scholar
  30. 30.
    Kruse A, Maniam P, Spieler F (2007) Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind Eng Chem Res 46(1):87–96CrossRefGoogle Scholar
  31. 31.
    Promdej C, Matsumura Y (2011) Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water. Ind Eng Chem Res 50(14):8492–8497CrossRefGoogle Scholar
  32. 32.
    Promdej C, Chuntanapum A, Matsumura Y (2010) Effect of temperature on tarry material production of glucose in supercritical water gasification. Journal of the Japan Institute of Energy 89(12):1179–1184CrossRefGoogle Scholar
  33. 33.
    Kabyemela B, Takigawa M, Adschiri T, Malaluan R, Arai K (1998) Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Ind Eng Chem Res 37(2):357–361CrossRefGoogle Scholar
  34. 34.
    Aida T, Shiraishi N, Kubo M, Watanabe M, Smith R (2010) Reaction kinetics of D-xylose in sub- and supercritical water. J Supercrit Fluids 55(1):208–216CrossRefGoogle Scholar
  35. 35.
    Goodwin A, Rorrer G (2010) Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chem Eng J 163(1–2):10–21CrossRefGoogle Scholar
  36. 36.
    Yong T, Matsumura Y (2012) Reaction kinetics of the lignin conversion in supercritical water. Ind Eng Chem Res 51(37):11975–11988CrossRefGoogle Scholar
  37. 37.
    Yong T, Matsumura Y (2013) Kinetic analysis of lignin hydrothermal conversion in sub- and supercritical water. Ind Eng Chem Res 52(16):5626–5639CrossRefGoogle Scholar
  38. 38.
    Yong T, Matsumura Y (2013) Kinetic analysis of guaiacol conversion in sub- and supercritical water. Ind Eng Chem Res 52(26):9048–9059CrossRefGoogle Scholar
  39. 39.
    Changi S, Zhu M, Savage P (2012) Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures. ChemSusChem 5(9):1743–1757Google Scholar
  40. 40.
    Dileo GJ, Neff ME, Kim S, Savage PE (2008) Supercritical water gasification of phenol and glycine as models for plant and protein biomass. Energy Fuel 22(2):871–877CrossRefGoogle Scholar
  41. 41.
    Sato N, Quitain A, Kang K, Daimon H, Fujie K (2004) Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind Eng Chem Res 43(13):3217–3222CrossRefGoogle Scholar
  42. 42.
    Samanmulya T, Matsumura Y (2013) Effect of activated carbon catalytic on supercritical water gasification of glycine as a model compound of protein. Journal of the Japan Institute of Energy 92(9):894–899CrossRefGoogle Scholar
  43. 43.
    Samanmulya T, Inoue S, Inoue T, Kawai Y, Kubota H, Munetsuna H, Noguchi T, Matsumura Y (2014) Gasification characteristics of alanine in supercritical water. Journal of the Japan Petroleum Institute 57(5):225–229CrossRefGoogle Scholar
  44. 44.
    Samanmulya T, Inoue S, Inoue T (2014) Kawai; Yoshifumi; Kubota, H.; Munetsuna, H.; Noguchi, T.; Matsumura, Y., gasification characteristics of amino acids in supercritical water. Journal of the Japan Institute of Energy 93(9):936–943CrossRefGoogle Scholar
  45. 45.
    Li J, Brill T (2003) Spectroscopy of hydrothermal reactions 25: kinetics of the decarboxylation of protein amino acids and the effect of side chains on hydrothermal stability. J Phys Chem A 107(31):5987–5992CrossRefGoogle Scholar
  46. 46.
    Lu Y, Savage P (2015) Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients. J Supercrit Fluids 99:88–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Energy and Environmental Engineering, Institute of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations