Biomass Conversion and Biorefinery

, Volume 5, Issue 1, pp 1–19 | Cite as

Life cycle assessment of pyrolysis oil applications

  • Jens F. Peters
  • Diego Iribarren
  • Javier Dufour
Original Article


In this study, different alternatives of bio-oil use are evaluated through life cycle assessment. Bio-oil is produced via fast pyrolysis of hybrid poplar and used as a fuel for cogeneration in a district heating plant, for co-combustion in a coal power plant, or as feedstock for its upgrading via hydrotreating in biorefineries. For the latter, two different configurations are assessed: one with the pyrolysis plant integrated in the biorefinery and another with several decentralized pyrolysis plants that deliver bio-oil to a central biorefinery. Process data are obtained by simulation in Aspen Plus®. The assessment follows an avoided burden approach, with all products of the processes replacing equivalent conventional products. Although the cogeneration option shows the highest life cycle energy savings, co-combustion in coal power plants (substituting coal) shows the best results in most of the assessed categories. The two biorefinery options generally score worse than direct combustion. When compared against each other, the main difference in their environmental impact arises from the use of the co-produced char, while transport distances have little influence. In order to assess the influence of the assumptions concerning the substituted products, alternative utilizations of the products are further investigated. The environmental performance of the assessed processes is found to be highly conditioned by the use assumed for the products.


Bio-oil Biorefinery Cogeneration Combustion Life cycle assessment Process simulation 



This research has been partly supported by the Regional Government of Madrid (S2009/ENE-1743) and the Spanish Ministry of Economy and Competitiveness (ENE2011-29643-C02-01).



Abiotic depletion potential


Acidification potential


Decentralized biorefinery


Integrated biorefinery




Nonrenewable (fossil plus nuclear) cumulative energy demand


Total cumulative energy demand


Circulating fluidized bed




Char and gas combustor


Combined heat and power




European Environment Agency


Eutrophication potential


European Union


Functional unit


Greenhouse gas


Global warming potential (100-year perspective)




Life cycle assessment


Ozone layer depletion potential


Pressure swing adsorption


Short-rotation crop


  1. 1.
    AEBIOM (2012) European bioenergy outlook. European Biomass Association, BrusselsGoogle Scholar
  2. 2.
    EEA (2013) EU bioenergy potential from a resource efficiency perspective—EEA report no. 6/2013. European Environment Agency, CopenhagenGoogle Scholar
  3. 3.
    Bridgwater A (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73. doi: 10.1016/S1364-0321(99)00007-6 CrossRefGoogle Scholar
  4. 4.
    Bridgwater AV (2004) Biomass fast pyrolysis. Therm Sci 8:21–49CrossRefGoogle Scholar
  5. 5.
    Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev 11:1056–1086. doi: 10.1016/j.rser.2005.07.008 CrossRefGoogle Scholar
  6. 6.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598. doi: 10.1021/ef034067u CrossRefGoogle Scholar
  7. 7.
    Pollex A, Ortwein A, Kaltschmitt M (2011) Thermo-chemical conversion of solid biofuels. Biomass Convers Bioref 2:21–39. doi: 10.1007/s13399-011-0025-z CrossRefGoogle Scholar
  8. 8.
    Bridgwater AV (2012) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain Energ 31:261–268. doi: 10.1002/ep.11635 CrossRefGoogle Scholar
  9. 9.
    Elliott D (2010) Advancement of bio-oil utilization for refinery feedstock. The Washington Bioenergy Research Symposium. Pacific Northwest National Laboratory, WashingtonGoogle Scholar
  10. 10.
    Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energ Fuel 21:1792–1815. doi: 10.1021/ef070044u CrossRefGoogle Scholar
  11. 11.
    Iribarren D, Peters JF, Dufour J (2012) Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 97:812–821. doi: 10.1016/j.fuel.2012.02.053 CrossRefGoogle Scholar
  12. 12.
    Iribarren D, Peters JF, Petrakopoulou F, Dufour J (2012) Well-to-wheels comparison of the environmental profile of pyrolysis-based biofuels. 20th European Biomass Conference and Exhibition, Milan. doi: 10.5071/20thEUBCE2012-5AV.1.7 Google Scholar
  13. 13.
    Hsu DD (2012) Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing. Biomass Bioenerg 45:41–47. doi: 10.1016/j.biombioe.2012.05.019 CrossRefGoogle Scholar
  14. 14.
    Han J, Elgowainy A, Dunn JB, Wang MQ (2013) Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresour Technol 133C:421–428. doi: 10.1016/j.biortech.2013.01.141 CrossRefGoogle Scholar
  15. 15.
    Wetterlund E, Leduc S, Dotzauer E, Kindermann G (2012) Optimal use of forest residues in Europe under different policies—second generation biofuels versus combined heat and power. Biomass Convers Bioref 3:3–16. doi: 10.1007/s13399-012-0054-2 CrossRefGoogle Scholar
  16. 16.
    Obernberger I (1998) Decentralized biomass combustion: state of the art and future development. Biomass Bioenerg 14:33–56. doi: 10.1016/S0961-9534(97)00034-2 CrossRefGoogle Scholar
  17. 17.
    ISO (2006) ISO 14044—environmental management—life cycle assessment—requirements and guidelines. 2006Google Scholar
  18. 18.
    ISO (2006) ISO 14040—environmental management—life cycle assessment—principles and frameworkGoogle Scholar
  19. 19.
    Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451. doi: 10.1016/j.biortech.2010.08.010 CrossRefGoogle Scholar
  20. 20.
    Kauffman N, Hayes D, Brown R (2011) A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel 90:3306–3314. doi: 10.1016/j.fuel.2011.06.031 CrossRefGoogle Scholar
  21. 21.
    Kaltschmitt M, Reinhardt GA, Stelzer T (1997) Life cycle analysis of biofuels under different environmental aspects. Biomass Bioenerg 12:121–134. doi: 10.1016/S0961-9534(96)00071-2 CrossRefGoogle Scholar
  22. 22.
    Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. Report ANL/ESD/08-2. Argonne National Laboratory, ChicagoGoogle Scholar
  23. 23.
    Han J, Elgowainy A, Palou-Rivera I et al (2011) Well-to-wheels analysis of fast pyrolysis pathways with GREET. Report ANL/ESD/11-8. Argonne National Laboratory, ChicagoCrossRefGoogle Scholar
  24. 24.
    Fan J, Kalnes TN, Alward M et al (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Rene Energ 36:632–641. doi: 10.1016/j.renene.2010.06.045 CrossRefGoogle Scholar
  25. 25.
    Roberts KG, Gloy BA, Joseph S et al (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833. doi: 10.1021/es902266r CrossRefGoogle Scholar
  26. 26.
    Aspen Technology (2012) AspenPlusGoogle Scholar
  27. 27.
    Althaus H-J, Doka G, Heck T et al (2007) Overview and methodology. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  28. 28.
    Venderbosch R, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Bioref 4:178–208. doi: 10.1002/bbb.205 CrossRefGoogle Scholar
  29. 29.
    Maciejewska A, Veringa H, Sanders J, Peteves SD (2006) Co-firing of biomass with coal: constraints and role of biomass pre-treatment. Report EUR-22461-EN, JRC. Institute for Energy, LuxembourgGoogle Scholar
  30. 30.
    IDAE (2011) Análisis del consumo energético del sector residencial en España. Instituto de Diversificación y Ahorro de. Energía, MadridGoogle Scholar
  31. 31.
    Guinée JB, Gorrée M, Heijungs R et al (2001) Life cycle assessment—an operational guide to the ISO standards. Part 1—LCA in perspective, LeidenGoogle Scholar
  32. 32.
    VDI (2012) VDI guideline 4600: cumulative energy demand (KEA)—terms, definitions, methods of calculation. Verein Deutscher Ingenieure, DüsseldorfGoogle Scholar
  33. 33.
    Goedkoop M, de Schryver A, Oele M et al (2010) Introduction to LCA with SimaPro 7. PRé Consultants, AmersfoortGoogle Scholar
  34. 34.
    Gasol CM, Martínez S, Rigola M et al (2009) Feasibility assessment of poplar bioenergy systems in the Southern Europe. Renew Sust Energ Rev 13:801–812. doi: 10.1016/j.rser.2008.01.010 CrossRefGoogle Scholar
  35. 35.
    Gasol CM, Gabarrell X, Anton A et al (2009) LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass Bioenerg 33:119–129. doi: 10.1016/j.biombioe.2008.04.020 CrossRefGoogle Scholar
  36. 36.
    Leible L, Kälber S, Kappler G et al (2007) Kraftstoff, Strom und Wärme aus Stroh und Waldrestholz. Institut für Technikfolgenabschätzung und Systemanalyse, Forschungszentrum Karlsruhe, KarlsruheGoogle Scholar
  37. 37.
    Ringer M, Putsche V, Scahill J (2006) Large-scale pyrolysis oil production: a technology assessment and economic analysis. NREL, Golden. doi: 10.2172/894989 CrossRefGoogle Scholar
  38. 38.
    Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J LCA 13:290–300. doi: 10.1007/s11367-008-0008-x CrossRefGoogle Scholar
  39. 39.
    Peters JF, Iribarren D, Dufour J (2013) Predictive pyrolysis process modelling in Aspen Plus. 21st European Biomass Conference and Exhibition, CopenhagenGoogle Scholar
  40. 40.
    Lynch S, Reno M (2009) Sustainable biofuels from fast pyrolysis. APEC workshop on implications of bio-refineries for energy and trade in the APEC region, TaipeiGoogle Scholar
  41. 41.
    Bridgwater AV (2012) Fast pyrolysis requirements for fuels and chemicals. From biomass to bioenergy via thermochemical processes. Stellenbosch University, StellenboschGoogle Scholar
  42. 42.
    Lievens C, Yperman J, Vangronsveld J, Carleer R (2008) Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 87:1894–1905. doi: 10.1016/j.fuel.2007.10.021 CrossRefGoogle Scholar
  43. 43.
    Lievens C, Carleer R, Cornelissen T, Yperman J (2009) Fast pyrolysis of heavy metal contaminated willow: influence of the plant part. Fuel 88:1417–1425. doi: 10.1016/j.fuel.2009.02.007 CrossRefGoogle Scholar
  44. 44.
    Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energ Fuel 10:293–298. doi: 10.1021/ef950202u CrossRefGoogle Scholar
  45. 45.
    Dones R, Bauer C, Röder A (2007) Kohle. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 6. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  46. 46.
    Venderbosch RH, Ardiyanti AR, Wildschut J et al (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85:674–686. doi: 10.1002/jctb.2354 CrossRefGoogle Scholar
  47. 47.
    Elliott D (2010) Advancement of bio-oil utilization for refinery feedstock. The Washington Bioenergy Research Symposium. Pacific Northwest National Laboratory, WashingtonGoogle Scholar
  48. 48.
    De Miguel MF, Groeneveld MJ, Kersten SRA et al (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energ Environ Sci 4:985–997. doi: 10.1039/c0ee00523a CrossRefGoogle Scholar
  49. 49.
    Holmgren J, Marinangeli R, Elliott D, Bain R (2008) Converting pyrolysis oils to renewable transport fuels: challenges and opportunities. NPRA Annual Meeting, San DiegoGoogle Scholar
  50. 50.
    Jones SB, Valkenburg C, Walton CW et al (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking : a design case. NREL, GoldenGoogle Scholar
  51. 51.
    Robinson PR, Shaheen EI (2006) Environmental pollution control. In: Hsu CS, Robinson PR (eds) Practical advances in petroleum processing. Springer, New York, pp 395–447CrossRefGoogle Scholar
  52. 52.
    Marafi M (2008) Spent catalyst waste minimization and utilization. 1st International Conference “Hazardous Waste Management”, ChaniaGoogle Scholar
  53. 53.
    Liang DT (2006) Management of spent catalysts in petroleum refineries. 2nd Asian Petroleum Technology Symposium Program, MalaysiaGoogle Scholar
  54. 54.
    Billege I (2009) 700 Refineries supply oil products to the world. Nafta 60:404–406Google Scholar
  55. 55.
    Gerber MA, Frye JG, Bowman LE et al (1999) Regeneration of hydrotreating and FCC catalysts. PNNL Report 13025, Pacific Northwest National Laboratory, WashingtonCrossRefGoogle Scholar
  56. 56.
    Marafi M, Stanislaus A, Furimsky E (2010) Environmental and safety aspects of spent hydroprocessing catalysts. In: Marafi M, Stanislaus A, Furimsky E (eds.) Handbook of spent hydroprocessing catalysts. Elsevier B.V, pp 93–120Google Scholar
  57. 57.
    Bauer C (2007) Holzenergie. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 9. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  58. 58.
    Dötsch C, Taschenberger J, Schönberg I (1998) Leitfaden Nahwärme, UMSICHT-Schriftenreihe, Band 6. 162. Fraunhofer Institut, OberhausenGoogle Scholar
  59. 59.
    Heck T (2007) Wärme- Kraft- Kopplung. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. ecoinvent report No. 14. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  60. 60.
    Del Campo B, Laird D, Brown R, Brewer C (2012) Stability and safe application of fast pyrolysis biochars. US Biochar Conference, Rohnert ParkGoogle Scholar
  61. 61.
    ECN-Biomass Phyllis Database. Accessed 20 Feb 2014
  62. 62.
    U.S. Environmental Protection Agency (2008) Catalog of CHP technologies. U.S. Environmental Protection Agency, Combined Heat and Power PartnershipGoogle Scholar
  63. 63.
    Weaver M (2010) The pyrolysis of biomass to give us biochar and using it as a soil improver. IEA Bioenergy Workshop 13, ExCo66: thermal pre-treatment of biomass for large-scale applications, YorkGoogle Scholar
  64. 64.
    Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energ 28:386–396. doi: 10.1002/ep CrossRefGoogle Scholar
  65. 65.
    Azargohar R, Dalai AK (2006) Biochar as a precursor of activated carbon. Appl Biochem Biotechnol 131:762–773. doi: 10.1385/ABAB:131:1:762 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jens F. Peters
    • 1
  • Diego Iribarren
    • 1
  • Javier Dufour
    • 1
    • 2
  1. 1.Systems Analysis UnitInstituto IMDEA EnergíaMóstolesSpain
  2. 2.Department of Chemical and Energy TechnologyRey Juan Carlos UniversityMóstolesSpain

Personalised recommendations