Biomass Conversion and Biorefinery

, Volume 4, Issue 2, pp 105–124 | Cite as

Process integration, energy and GHG emission analyses of Jatropha-based biorefinery systems

  • Elias Martinez-Hernandez
  • Jorge Martinez-Herrera
  • Grant M. Campbell
  • Jhuma SadhukhanEmail author
Original Article


Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.


Biodiesel Green diesel Biorefinery Utility system design LCA Process integration 



Financial support from the CONACYT of Mexico and EPSRC (EP/F063563/1 and EP/F063563/2) of the UK for undertaking this research is gratefully acknowledged.


  1. 1.
    Wahl N, Hildebrandt T, Moser C, Lüdeke-Freund F, Averdunk K (2012) Insights into Jatropha projects worldwide—key facts & figures from a global survey. Leuphana University of Lüneburg, LüneburgGoogle Scholar
  2. 2.
    Devappa RK, Makkar HPS, Becker K (2010) Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenergy 34(8):1125–1133CrossRefGoogle Scholar
  3. 3.
    Hamarneh AI, Heeres HJ, Broekhuis AA, Picchioni F (2010) Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int J Adhes Adhes 30(7):615–625CrossRefGoogle Scholar
  4. 4.
    Misailidis N, Campbell GM, Du C, Sadhukhan J, Mustafa M, Mateos-Salvador F, Weightman RM (2009) Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol. Part 2. Process simulation and economic analysis. Chem Eng Res Des 87:1239–1250CrossRefGoogle Scholar
  5. 5.
    Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32(12):1063–1084CrossRefGoogle Scholar
  6. 6.
    Huaping Z, Zongbin W, Yuanxiong C, Ping Z, Shijie D, Xiaohua L, Zongqiang M (2006) Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chinese J Catal 27(5):391–396Google Scholar
  7. 7.
    Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. Accessed 25 Feb 2013
  8. 8.
    Singh RN, Vyas DK, Srivastava NSL, Narra M (2008) SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energ 33(8):1868–1873CrossRefGoogle Scholar
  9. 9.
    Rivera-Lorca JA, Ku-Vera JC (1997) Chemical composition of three different varieties of J. curcas from Mexico. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universität Graz, Graz (Austria), pp 47–52Google Scholar
  10. 10.
    Martinez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96(1):80–89CrossRefGoogle Scholar
  11. 11.
    Makkar HPS, Becker K (1997) Potential of J. curcas seed meal as a protein supplement to livestock feed. Constraints to its utilisation and possible strategies to overcome constraints. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universitat Graz, Graz (Austria), pp 190–205Google Scholar
  12. 12.
    FACT Foundation (2010) The Jatropha handbook. Accessed February 2013
  13. 13.
    Makkar HPS, Martinez-Herrera J, Becker K (2008) Variations in seed number per fruit, seed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. J Plant Sc 3(4):260–265CrossRefGoogle Scholar
  14. 14.
    Heller J (1996) Physic nut Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  15. 15.
    Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International BV, Wageningen (Netherlands)Google Scholar
  16. 16.
    Staubmann R, Foidl G, Foidl N, Gubitz GM, Lafferty RM, Arbizu VM, Steiner W (1997) Biogas production from Jatropha curcas press cake. Appl Biochem Biotech 63–65(1):457–467CrossRefGoogle Scholar
  17. 17.
    Lopez O, Foidl G, Foidl N (1997) Production of Biogas from J. curcas Fruit shells. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universitat Graz, Graz (Austria), pp 118–122Google Scholar
  18. 18.
    Dhanya MS, Gupta N, Joshi HC, Lata (2009) Biogas potentiality of agro-wastes Jatropha fruit coat. Int J Civil Environ Eng 1(3):136–140Google Scholar
  19. 19.
    Lopez J, Santos M, Perez A, Martin A (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technol 100(23):5609–5615CrossRefGoogle Scholar
  20. 20.
    Thamsiriroj T, Murphy JD (2010) Can rape seed biodiesel meet the European Union sustainability criteria for biofuels? Energy Fuels 24(3):1720–1730CrossRefGoogle Scholar
  21. 21.
    Manurung R, Wever DAZ, Wildschut J, Venderbosch RH, Hidayat H, van Dam JEG, Leijenhorst EJ, Broekhuis AA, Heeres HJ (2009) Valorisation of Jatropha curcas L. parts: nut shell conversion to fast pyrolysis oil. Food Bioprod Process 87(3):187–196CrossRefGoogle Scholar
  22. 22.
    Sricharoenchaikul V, Atong D (2009) Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J Anal Appl Pyrol 85(1–2):155–162CrossRefGoogle Scholar
  23. 23.
    Ng KS, Sadhukhan J (2011) Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy 35(3):1153–1169CrossRefGoogle Scholar
  24. 24.
    Sadhukhan J, Ng KS, Shah N, Simons HJ (2009) Heat integration strategy for economic production of combined heat and power from biomass waste. Energy Fuels 23(10):5106–5120CrossRefGoogle Scholar
  25. 25.
    Sadhukhan J, Ng KS (2011) Economic and European Union environmental sustainability criteria assessment of bio-oil based biofuel systems: refinery integration cases. Ind Eng Chem Res 50(11):6794–6808CrossRefGoogle Scholar
  26. 26.
    Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Conv Bioref 1(1):39–53CrossRefGoogle Scholar
  27. 27.
    Wagner H, Kaltschmitt M (2012) Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes. Biomass Conv Bioref. doi: 10.1007/s13399-012-0064-0 Google Scholar
  28. 28.
    Jahan MS, Sultana N, Rahman M, Quaiyyum A (2012) An integrated biorefinery initiative in producing dissolving pulp from agricultural wastes. Biomass Conv Bioref. doi: 10.1007/s13399-012-0067-x Google Scholar
  29. 29.
    Pollex A, Ortwein A, Kaltschmitt M (2012) Thermo-chemical conversion of solid biofuels. Biomass Conv Bioref 2(1):21–39CrossRefGoogle Scholar
  30. 30.
    Boldrin A, Balzan A, Astrup T (2013) Energy and environmental analysis of a rapeseed biorefinery conversion process. Biomass Conv Bioref. doi: 10.1007/s13399-013-0071-9 Google Scholar
  31. 31.
    Weinberg J, Kaltschmitt M, Wilhelm C (2012) Analysis of greenhouse gas emissions from microalgae-based biofuels. Biomass Conv Bioref 2(2):179–194CrossRefGoogle Scholar
  32. 32.
    Reinhardt G, Gartner S, Rettenmaier N, Munch J, Falkenstein E (2007) Screening life cycle assessment of Jatropha biodiesel. Institute for Energy and Environmental Research Heidelberg, Heidelberg (Germany). Accessed 25 Feb 2013
  33. 33.
    Achten WMJ, Almeida J, Fobelets V, Bolle E, Mathijs E, Singh VP, Tewari DN, Verchot LV, Muys B (2010) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energ 87(12):3652–3660CrossRefGoogle Scholar
  34. 34.
    Ndong R, Montrejaud-Vignoles M, Saint-Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. Glob Change Biol Bioenergy 3:197–210CrossRefGoogle Scholar
  35. 35.
    Prueksakorn K, Gheewala SH (2006). Energy and greenhouse gas implications of biodiesel production from Jatropha curcas L. Proceedings of the 2nd Joint International Conference on Sustainable Energy and Environment, Nov 21–Nov 23 2006; Bangkok, Thailand. Accessed 25 Feb 2013
  36. 36.
    Linnhoff B (1993) Pinch analysis—a state of the art overview. Trans IchemE 71(A):503–522Google Scholar
  37. 37.
    Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRefGoogle Scholar
  38. 38.
    Majozi T, Brouckaert CJB, Buckley CAB (2006) A graphical technique for wastewater minimisation in batch processes. J Environ Manag 78(4):317–329CrossRefGoogle Scholar
  39. 39.
    Ng DKS, Pham V, El-Halwagi MM, Jiménez-Gutiérrez A, Spriggs HD (2010) A hierarchical approach to the synthesis and analysis of integrated biorefineries. In: El-Halwagi MM, Linninger AA, editors. Design for Energy. Proceedings of the Seventh International Conference on Foundations of Computer-Aided Process Design, June 7-Jun 12 2009; Breckenridge, CO (US). CRC, Florida, pp 425–432Google Scholar
  40. 40.
    Kokossis AC, Yang A (2010) On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comput Chem Eng 34(9):1397–1405CrossRefGoogle Scholar
  41. 41.
    El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools, 1st edn. Academic, San DiegoGoogle Scholar
  42. 42.
    Dunnett A, Adjiman C, Shah N (2007) Biomass to heat supply chains: applications of process optimization. Process Saf Environ 85(5):419–429CrossRefGoogle Scholar
  43. 43.
    Hosseini SA, Shah N (2011) Multiscale modeling of biorefineries. Comput Aided Chem Eng 29:1688–1692CrossRefGoogle Scholar
  44. 44.
    Williams AG, Audsley E, Sandars DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Cranfield University and DEFRA, Bedford (UK). Accessed 25 Feb 2013
  45. 45.
    Melgarejo-Flores LA, Palmerin-Ruiz E, Magdaleno-Molina M, Gasca-Ramirez J, Sosa-Iglesias G, Vega-Rangel E, Sánchez-Reyna G, Rivero-Rodríguez R (2008) Integración del inventario para análisis de ciclo de vida en la producción de petrolíferos de la refinería Miguel Hidalgo. Presented at: International Eco-efficiency Forum 2008. Instituto Mexicano del Petroleo, Coatzacoalcos (Mexico). Accessed 25 Feb 2013
  46. 46.
    Beer T, Grant T, Morgan G, Lapszewicz J, Anyon P, Edwards J (2001) Comparison of transport fuels. Stage 2 study of life-cycle emissions analysis of alternative fuels for heavy vehicles. Australian Greenhouse Office, Aspendale (Australia). Accessed 25 Feb 2013
  47. 47.
    Spath PL, Mann MK (2001). Life cycle assessment of hydrogen production via NG steam reforming. National Renewable Energy Laboratory, Golden, Colorado (US). Accessed 25 Feb 2013
  48. 48.
    Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2008) LCA of soybean meal. Int J LCA 13(3):240–254CrossRefGoogle Scholar
  49. 49.
    SENER, Mexico (2013) Sistema de Información Energética; Accessed 25 Feb 2013
  50. 50.
    Aspen Technology, Inc. (2013) Accessed 25 Feb 2013
  51. 51.
    Trabucco A, Achten WMJ, Bowe C, Aerts R, Orshoven JV, Norgroves L, Muys B (2010) Global mapping of Jatropha curcas yield based on response of fitness to present and future climate. Glob Change Biol Bioenergy 2:139–151Google Scholar
  52. 52.
    Angulo-Escalante MA (2010) Clones de Jatropha curcas altamente productivos. Resultados de proyectos de investigación, validación y transferencia de tecnología 2009–2010. Fundación Produce Sinaloa A.C., Sinaloa (Mexico), pp 136–139. Accessed 25 February 2013
  53. 53.
    Kalannavar VN (2008) Response of Jatropha curcas to nitrogen, phosphorus and potassium levels in northern transition zone of Karnataka. Dissertation, University of Agricultural Sciences, Dharwad (India)Google Scholar
  54. 54.
    Ouwens DK, Francis G, Franken YJ, Rijssenbeek W, Riedacker R, Foidl N, Jongschaap R, Bindraban P (2007) Position Paper on Jatropha curcas, State of the Art, Small and Large Scale Project Development. FACT Foundation, The Netherlands. Accessed October 2013.
  55. 55.
    Prueksakorn K, Gheewala SH, Malakul P, Bonnet S (2010) Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energ Sust Dev 14(1):1–5CrossRefGoogle Scholar
  56. 56.
    Adriaans T (2006) Suitability of solvent extraction for Jatropha curcas. FACT Foundation, The Netherlands. Accessed 25 Feb 2013
  57. 57.
    Chang A, Liu YA (2010) Integrated process modeling and product design of biodiesel manufacturing. Ind Eng Chem Res 49(3):1197–1213CrossRefGoogle Scholar
  58. 58.
    Schmidt T (2011) Anaerobic digestion of Jatropha curcas L. press cake and effects of an iron-additive. Waste Manag Res 29:1171–1176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elias Martinez-Hernandez
    • 3
  • Jorge Martinez-Herrera
    • 2
  • Grant M. Campbell
    • 1
  • Jhuma Sadhukhan
    • 3
    Email author
  1. 1.Centre for Process Integration, School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  2. 2.ENERGY J.H. S.A. de C.V.TexcocoMexico
  3. 3.Centre for Environmental StrategyUniversity of SurreyGuildfordUK

Personalised recommendations