Biomass Conversion and Biorefinery

, Volume 4, Issue 1, pp 43–51 | Cite as

Regenerative reverse-flow reactor system for cracking of producer gas tars

  • Per Tunå
  • Fredric BauerEmail author
  • Christian Hulteberg
  • Laura Malek
Original Article


The gas produced in a biomass gasifier contains high amounts of tars which have to be removed prior to downstream utilization. Calcined dolomite is catalytically active for tar cracking reactions and resistant to sulfur poisoning. In this study, calcined dolomite was used as bed material in a reverse-flow reactor for cracking of tars in a model synthesis gas. 1-methylnaphthalene was used as model tar compound at a concentration of 15,000 mg/Nm3. The reactor system was operated at temperatures between 700 and 850 °C in the active zone. Total tar conversion was over 95 % for the system under reverse-flow conditions at the highest temperature. Already at the lowest temperature, up to 78 % of the 1-methylnaphthlene was converted, but mainly to other more stable tar compounds such as naphthalene and benzene, reaching a total tar conversion of only 23 %. To produce tar-free gas, higher temperatures are thus needed. The use of very high temperatures does, however, lead to a significant decrease in the specific area of the dolomite, as shown by BET surface measurements. The dolomite was further characterized with x-ray diffraction and energy dispersive spectroscopy.


Biomass gasification Tars Tar removal Dolomite 



The research was funded by the Swedish energy Agency through the Swedish Gas Technology Centre and the Danish Gas Technology Centre, in cooperation with the industrial partners ABB Corporate Research, Alufluor AB, E.ON Gasification Development AB, E.ON Sverige AB, Göteborg Energi AB, Statoil ASA, Stockholm Gas AB, Tekniska Verken i Linköping AB, ÅForsk, and Öresundskraft AB.

Supplementary material


(MPG 6556 kb)


  1. 1.
    Albertazzi S, Basile F, Brandin J et al (2005) The technical feasibility of biomass gasification for hydrogen production. Catal Today 106:297–300. doi: 10.1016/j.cattod.2005.07.160 CrossRefGoogle Scholar
  2. 2.
    Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581. doi: 10.3390/en20300556 CrossRefGoogle Scholar
  3. 3.
    Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sustain Energy Rev 15:366–378. doi: 10.1016/j.rser.2010.08.003 CrossRefGoogle Scholar
  4. 4.
    Kirubakaran V, Sivaramakrishnan V, Nalini R et al (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186. doi: 10.1016/j.rser.2007.07.001 CrossRefGoogle Scholar
  5. 5.
    Xu C, Donald J, Byambajav E, Ohtsuka Y (2010) Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89:1784–1795. doi: 10.1016/j.fuel.2010.02.014 CrossRefGoogle Scholar
  6. 6.
    Tunå P, Svensson H, Brandin J (2010) Modeling of reverse-flow partial oxidation process for gasifier product gas upgrading. Fifth International Conference on Thermal Engineering: Theory and Applications, MarrakeshGoogle Scholar
  7. 7.
    Evans RJ, Milne TA (1997) Chemistry of tar formation and maturation. In: Bridgwater A, Boocock D (eds) Developments in Thermochemical Biomass Conversion, vol 2. Blackie Academic & Professional, London, pp 803–816CrossRefGoogle Scholar
  8. 8.
    Milne TA, Abatzoglou N, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. NREL/TP-570-25357. National renewable energy laboratory, Golden, doi: 10.2172/3726Google Scholar
  9. 9.
    Anis S, Zainal ZA (2011) Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew Sustain Energy Rev 15:2355–2377. doi: 10.1016/j.rser.2011.02.018 CrossRefGoogle Scholar
  10. 10.
    Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43:6911–6919. doi: 10.1021/ie0498403 CrossRefGoogle Scholar
  11. 11.
    Zhang R, Brown RC, Suby A, Cummer K (2004) Catalytic destruction of tar in biomass derived producer gas. Energy Convers Manag 45:995–1014. doi: 10.1016/j.enconman.2003.08.016 CrossRefGoogle Scholar
  12. 12.
    Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energy Fuel 23:1874–1887. doi: 10.1021/ef800830n CrossRefGoogle Scholar
  13. 13.
    Dayton D (2002) A review of the literature on catalytic biomass tar destruction milestone completion report. NREL/TP-510-32815. National Renewable Energy Laboratory, GoldenGoogle Scholar
  14. 14.
    Olivares A, Aznar MP, Caballero MA et al (1997) Biomass gasification: produced gas upgrading by in-bed use of dolomite. Ind Eng Chem Res 36:5220–5226. doi: 10.1021/ie9703797 CrossRefGoogle Scholar
  15. 15.
    Orío A, Corella J, Narváez I (1997) Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Ind Eng Chem Res 36:3800–3808. doi: 10.1021/ie960810c CrossRefGoogle Scholar
  16. 16.
    Delgado J, Aznar MP, Corella J (1996) Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: life and usefulness. Ind Eng Chem Res 35:3637–3643. doi: 10.1021/ie950714w CrossRefGoogle Scholar
  17. 17.
    Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76:1117–1127. doi: 10.1016/S0016-2361(97)00109-9 CrossRefGoogle Scholar
  18. 18.
    Świerczyński D, Libs S, Courson C, Kiennemann A (2007) Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl Catal B Environ 74:211–222. doi: 10.1016/j.apcatb.2007.01.017 CrossRefGoogle Scholar
  19. 19.
    Zhao Z, Kuhn JN, Felix LG et al (2008) Thermally impregnated Ni–Olivine catalysts for tar removal by steam reforming in biomass gasifiers. Ind Eng Chem Res 47:717–723. doi: 10.1021/ie071089l CrossRefGoogle Scholar
  20. 20.
    Kuhn JN, Zhao Z, Senefeld-Naber A et al (2008) Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity, and stability. Appl Catal A Gen 341:43–49. doi: 10.1016/j.apcata.2007.12.037 CrossRefGoogle Scholar
  21. 21.
    Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sustain Energy Rev 13:594–604. doi: 10.1016/j.rser.2008.01.009 CrossRefGoogle Scholar
  22. 22.
    Han J, Kim H (2008) The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sustain Energy Rev 12:397–416. doi: 10.1016/j.rser.2006.07.015 CrossRefGoogle Scholar
  23. 23.
    Devi L, Ptasinski KJ, Janssen FJJG (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–140. doi: 10.1016/S0961-9534(02)00102-2 CrossRefGoogle Scholar
  24. 24.
    Matros YS, Bunimovich GA (1995) Control of volatile organic compounds by the catalytic reverse process. Ind Eng Chem Res 34:1630–1640. doi: 10.1021/ie00044a016 CrossRefGoogle Scholar
  25. 25.
    Matros YS, Bunimovich GA (1996) Reverse-flow operation in fixed bed catalytic reactors. Catal Rev 38:1–68. doi: 10.1080/01614949608006453 CrossRefGoogle Scholar
  26. 26.
    Haynes TN, Georgakis C, Caram HS (1992) The application of reverse flow reactors to endothermic reactions. Chem Eng Sci 47:2927–2932. doi: 10.1016/0009-2509(92)87153-H CrossRefGoogle Scholar
  27. 27.
    Van de Beld L, Wagenaar BM, Prins W (1997) Cleaning of hot producer gas in a catalytic adiabatic packed bed reactor with periodic flow reversal. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic & Professional, London, pp 907–920CrossRefGoogle Scholar
  28. 28.
    Svensson H, Tunå P, Hulteberg C, Brandin J (2012) Modeling of soot formation during partial oxidation of producer gas. Fuel 106:271–278. doi: 10.1016/j.fuel.2012.10.061 CrossRefGoogle Scholar
  29. 29.
    Myrén C, Hörnell C, Björnbom E, Sjöström K (2002) Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica. Biomass Bioenergy 23:217–227. doi: 10.1016/S0961-9534(02)00049-1 CrossRefGoogle Scholar
  30. 30.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  31. 31.
    Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931. doi: 10.1063/1.1746689 CrossRefGoogle Scholar
  32. 32.
    Aldén H, Björkman E, Carlsson M, Waldheim L (1994) Catalytic cracking of naphthalene on dolomite. In: Bridgwater AV (ed) Advances in thermochemical biomass conversion, vol 1. Blackie Academic & Professional, London, pp 216–232Google Scholar
  33. 33.
    Garcia XA, Hüttinger KJ (1989) Steam gasification of naphthalene as a model reaction of homogeneous gas/gas reactions during coal gasification. Fuel 68:1300–1310. doi: 10.1016/0016-2361(89)90246-9 CrossRefGoogle Scholar
  34. 34.
    Devi L, Ptasinski KJ, Janssen FJJG (2005) Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar. Fuel Process Technol 86:707–730. doi: 10.1016/j.fuproc.2004.07.001 CrossRefGoogle Scholar
  35. 35.
    Coll R, Salvadó J, Farriol X, Montané D (2001) Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation. Fuel Process Technol 74:19–31. doi: 10.1016/S0378-3820(01)00214-4 CrossRefGoogle Scholar
  36. 36.
    Boucif F, Marouf-Khelifa K, Batonneau-Gener I et al (2010) Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption. Powder Technol 201:277–282. doi: 10.1016/j.powtec.2010.04.013 CrossRefGoogle Scholar
  37. 37.
    Sasaki K, Qiu X, Hosomomi Y et al (2013) Effect of natural dolomite calcination temperature on sorption of borate onto calcined products. Microporous Mesoporous Mater 171:1–8. doi: 10.1016/j.micromeso.2012.12.029 CrossRefGoogle Scholar
  38. 38.
    Ávila I, Crnkovic PM, Milioli FE, Luo KH (2012) Investigation of the pore blockage of a Brazilian dolomite during the sulfation reaction. Appl Surf Sci 258:3532–3539. doi: 10.1016/j.apsusc.2011.11.108 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Per Tunå
    • 1
  • Fredric Bauer
    • 1
    Email author
  • Christian Hulteberg
    • 1
  • Laura Malek
    • 1
  1. 1.Department of Chemical EngineeringLund UniversityLundSweden

Personalised recommendations