Advertisement

Biomass Conversion and Biorefinery

, Volume 3, Issue 3, pp 239–254 | Cite as

Bioenergy potential in Mexico—status and perspectives on a high spatial distribution

  • Mario Rios
  • Martin Kaltschmitt
Review Article

Abstract

This paper aims to estimate the potential to use biomass for energy provision in Mexico for today and the two decades to come. Therefore, a novel approach is developed and applied for relevant biomass resources considering technical aspects as well as sustainability constraints. The results of this approach shows that Mexico has a significant potential of biomass for energy production (2,228 PJ/a on average), which represents roughly 48 % of the total final energy consumption by 2010. Based on the official outlooks, it is expected that in the coming two decades, this potential might slightly increase (2,453 PJ/a in 2030 on average), since the biogas potential from organic residues from municipalities and livestock (i.e., animal manure) might rise due to the increase in food production for the growing population. On the other hand, the land available for energy crops production and the provision of forestry wood residues are expected to decrease due the same premise. Additionally, this method offers the opportunity to present the results in a high spatial disaggregation. This is essential to develop strategies and scenarios of an increased use of biomass because bioenergy is usually a source for local and decentralized energy provision. In addition, the methodology proposed here may hold true for other countries with a considerable lack of primary data.

Keywords

Mexico Biomass potential Bioenergy potential Spatial distribution Sustainability constraints 

References

  1. 1.
    Energy National Balance (2010) (Balance Nacional de Energía 2010), Ministry of Energy, Undersecretary of Energy Planning and Technological Development, 2011Google Scholar
  2. 2.
    The National Statistics, Geography and Informatics Institute of Mexico (INEGI) Census of Population and Housing 1980–2010Google Scholar
  3. 3.
    British Petroleum Statistical Review of World Energy June 2011, BP, http://www.bp.com/
  4. 4.
    SENER (2012a) Publications, Ministry of Energy of Mexico, http://www.sener.gob.mx/
  5. 5.
    SENER (2011a) Oil products prospectives 2011–2025 (Prospectivas de los petroliferos 2010–2025, Mexico) Ministry of Energy, 2012Google Scholar
  6. 6.
    SENER (2011e) Renewable Energy Prospectives 2011–2025 Mexico, (Prospectivas de energiarenovables 2011–2025 Mexico), Ministry of Energy, 2012Google Scholar
  7. 7.
    SENER (2011b) Natural gas prospective 2011–2025 (Prospectiva gas natural 2010–2025, Mexico), Ministry of Energy, 2012Google Scholar
  8. 8.
    SENER (2011c) Liquefied Petroleum Gas prospective 2011–2025, (Prospectiva gas licuado 2010–2025 Mexico), Ministry of Energy, 2012Google Scholar
  9. 9.
    SENER (2011d) Electricity Sector prospective (Prospectiva del Sector Electrico 2010–2025, Mexico), Ministry of Energy, 2012Google Scholar
  10. 10.
    SENER (2012b) National Energy Strategy 2012–2026 (Estrategia Nacional de Energía),Ministry of Energy, 2013Google Scholar
  11. 11.
    Kaltschmitt M, Hartmann H (eds) (2001) Energie aus Biomasse. Springer, BerlinGoogle Scholar
  12. 12.
    Masera O et al (2006) The bioenergy in Mexico (La bioenergía en México. Un catalizador del desarrollo sustentable). Red Mexicana de Bioenergía and Comisión Nacional ForestalGoogle Scholar
  13. 13.
    CIEco (Centro de Investigaciones en Ecosistemas) (2008) Análisis integrado de las tecnologías, el ciclo de vida y la sustentabilidad de las opciones y escenarios para el aprovechamiento de la bioenergía en MéxicoGoogle Scholar
  14. 14.
    ESRI (2011) ArcGIS Editor. 10 ed., Environmental Systems Research Institute. Geographic Information System Software.Google Scholar
  15. 15.
    Batzias FA, Sidiras DK, Spyrou EK (2005) Evaluating livestock manures for biogas production: a GIS based method/ Renewable Energy 30Google Scholar
  16. 16.
    BEE Harmonization of biomass resource assessment, Vol 1: Best Practices and Methods Handbook. 2, Enschede, The Netherlands, BTG Biomass Technology GroupGoogle Scholar
  17. 17.
    SIAP SAGARPA (2012) The Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food http://www.siap.gob.mx/
  18. 18.
    INEGI (2012) Statistical and Geographical data base, Land use maps, vector data. The National Statistics, Geography and Informatics Institute of Mexico, www.inegi.gob.mx
  19. 19.
    Bio top (2009) Biofuels Assessment on Technical Opportunities and Research Needs for Latin America, Task 2.1. Feedstock production in Latin AmericaGoogle Scholar
  20. 20.
    NERC (2008) Manure Production and Bedding Used Calculator, Northeast Recycling CouncilGoogle Scholar
  21. 21.
    Information and Advisory Service on Appropriate Technology (2000) Biogas digest. German agency for technical cooperation, EschbornGoogle Scholar
  22. 22.
    SFA SAGARPA (2011) Long term perspective for the farming sector of Mexico 2011–2020, (Perspectivas de largo plazo para el sector agropecuario de México 2011–2020), The Ministry of Agriculture, Livestock, Rural Development, Fisheries and FoodGoogle Scholar
  23. 23.
    SIAP SAGARPA (2010) Directorio Nacional de Rastros http://www.campomexicano.gob.mx/portal_siap/Integracion/EstadisticaBasica/Pecuario/Rastros/sec cedos.pdf , The Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food
  24. 24.
    Signorini M, Civit S, Bonilla M, Cervantes M, Calderón M, Pérez A, Espejel M, Almanza C (2006) Evaluación de riesgos de los rastros y mataderos municipalesGoogle Scholar
  25. 25.
    EPASTRIVE (2005) Programe 2007–2013, Enhanced Nitrogen Removal for Slaughterhouses WasteWater Using Novel Technologies (Environmental Protection Agency)Google Scholar
  26. 26.
    Filipe Carlos DM (1998) McMaster University, Hamilton, Ontario, Biological Wastewater Treatment, Second Edition, Revised and Expanded, ISBN 9780824789190Google Scholar
  27. 27.
    Information and Advisory Service on Appropriate Technology. Biogas digest. German agency for technical cooperation, Eschborn; 2000Google Scholar
  28. 28.
    Formentini DF, Fracaro GP, Costanzi RN, Nelson Samuel Souza M, Marques CA (2011) Electricity generation from biogas of poultry slaughterhouse biomass in Matelandia – Brazil, World Renewable Energy Congress, Linköping SwedenGoogle Scholar
  29. 29.
    SAGARPA (2011) Statistical Data base, The Ministry of Environment and Natural Resources (Secretaría de Medio Ambiente y Recursos Naturales)Google Scholar
  30. 30.
    EPA (2008) AP-42, Fifth Edition, Volumen I, Section 2.4, Estimating Emissions from Municipal Solid Waste Landfills, United States Environmental Protection AgencyGoogle Scholar
  31. 31.
    Aguilar-Virgen Q, Armijo-de Vega C, Taboada-Gonzalez PA (2009) Captura de biogás del relleno sanitario de Ensenada B.C. Encuentro de Expertos en Residuos Solidos, AbrilGoogle Scholar
  32. 32.
    Caresana F, Comodi G, Pelagalli L, Pierpaoli P, Vagni S (2011) Energy production from landfill biogas: An italian case, Volume 35, Issue 10, 15 October, Pages 4331–4339Google Scholar
  33. 33.
    Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32:1243–1257CrossRefGoogle Scholar
  34. 34.
    Victor Gutierrez Avedoy (2006) Diagnóstico Básico para la Gestión Integral de Residuos, SEMARNAT, INE, ISBN: 968-817-803-9Google Scholar
  35. 35.
    CONAGUA (2006) Estadísticas del agua en México, edición 2011, National Water Commission of MexicoGoogle Scholar
  36. 36.
    Monroy O, Fama G, Meraz M, Montoya L, Macarie H (2000) Anaerobic digestion for wastewater treatment in Mexico: state of the technologyGoogle Scholar
  37. 37.
    Metcalf and Eddy Wastewater engineering: Treatment and Reuse/, Inc-4th ed/ revised by George Tchobanoglous, Franklin L. H. david StenselGoogle Scholar
  38. 38.
    Duncan Mara and Nigel Horan (2000) Handbook of Water and Wastewater Microbiology, ISBN: 978-0-12-470100-7Google Scholar
  39. 39.
    The Water Agenda (2030) National Water Commission of Mexico (CONAGUA), 2011, http://www.conagua.gob.mx/
  40. 40.
    Linden DR, Clapp CE and Dowdy, RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota, Soil & Tillage Research 56Google Scholar
  41. 41.
    Valdez-Vazquez I, Acevedo-Benitez JA, Hernandez-Santiago C (2010) Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renewable and Sustainable Energy ReviewsGoogle Scholar
  42. 42.
    Frank Rosillo-Calle, peter de Groot and Sarah L. Hemstock (2000) The biomass Assessment HandbookGoogle Scholar
  43. 43.
    Lora ES, Andrade RV (2009) Biomass as energy source in Brazil, Renewable Sustainable Energy ReviewGoogle Scholar
  44. 44.
    IPCC (2007) Fourth Assessment Report: Climate Change, 9.4.3.2 Global Forest sectoral modelingGoogle Scholar
  45. 45.
    CONAFOR (2012) Sistema Nacional de información Forestal http://www.cnf.gob.mx:8080/snif/portal/zonificacion
  46. 46.
    INE (2006) National Greenhouse Gas Inventory (NGHGI) for the period 1990–2002. the Ecology Institute Mexico, INE (spanish)Google Scholar
  47. 47.
    IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. Land Use Change, and Forestry(LULUCF) 2003Google Scholar
  48. 48.
    de Jong B, Anaya C, Masera O et al (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260(10):1689–1701CrossRefGoogle Scholar
  49. 49.
    Nicolae Scarlat, Viorel Blujdea, Jean-Francois Dallemand (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania, Biomass and Bioenergy, Volume 35, Issue 5, MayGoogle Scholar
  50. 50.
    Panichelli L, Gnansounou E (2008) GIS modeling of forest wood residues potential for energy use based on forest inventory data: methodological approach and case study applicationGoogle Scholar
  51. 51.
    Forest strategic program for Mexico (2025) CONAFOR, National Forestry Commission of Mexico 2005Google Scholar
  52. 52.
    FRA (2010) Mexico Forest Resources Assessment, FAO, 2010, www.fao.org/forestry/fra
  53. 53.
  54. 54.
    INEGI (2012) El Directorio Estadístico Nacional de Unidades Económicas, http://www3.inegi.org.mx/sistemas/mapa/denue/default.aspx
  55. 55.
    FAO (1990) Energy conservation in the mechanical forest industries. Rome, Italy. ISBN 92-5-102912-1Google Scholar
  56. 56.
    Dercan B, Lukic T, Bubalo-Zivkovic M, Durdev B, Stojsavljevic R, Pantelic M (2012) Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia, Renewable and Sustainable Energy ReviewsGoogle Scholar
  57. 57.
    FAO (2009) Global demand for wood products, State of the World’s Forests 2009 Rome, ItalyGoogle Scholar
  58. 58.
    FAO's views on Bioenergy, publications and reports, http://www.fao.org/bioenergy/en/
  59. 59.
    Dafang Z, Dong J, Lei L, Yaohuan H (2011) Assessment of bioenergy potential on marginal land in China. Renew Sust Energ Rev 15:1050–1056CrossRefGoogle Scholar
  60. 60.
    Liu TT, McConkey BG, Ma ZY, Liu ZG, Li X, Cheng LL (2011) Strengths, weakness, opportunities and threats analysis of bioenergy production on marginal land. Energ Procedia 5:2378–2386CrossRefGoogle Scholar
  61. 61.
    CONABIO, Use land Publications, the National Commission for Knowledge and Use of Biodiversity http://www.biodiversidad.gob.mx/publicaciones/
  62. 62.
    INIFAP, Annual Report 2009, Buffel grass in in the National Institute for Agricultural, Livestock and Forestry Research of Mexico, Especial Publications No. 5Google Scholar
  63. 63.
    INEGI (2009) VIII Censo Agrícola, Ganadero y Forestal 2007. (INEGI, Agricultural Census 2007)Google Scholar
  64. 64.
    SAGARPA (2012) ethanol and biodiesel production http://www.bioenergeticos.gob.mx/ (spanish)
  65. 65.
    Carina Edith Delgado Caballero, José René Valdez Lazalde, Aurelio Manuel Fierros González, Héctor Manuel de los Santos Posadas 1 y Armando Gómez Guerrero, Area aptitude for Eucalyptus plantations analytic hierarchy process vs. Boolean algebra, Rev. Mex. Cien. For:. Vol. 1. Núm. 1Google Scholar
  66. 66.
    Luis Ugalde and Osvaldo Pérez (2001) Mean Annual Volume Increment of Selected Industrial Forest Plantation Species. Forest Plantations Thematic Papers, FAOGoogle Scholar
  67. 67.
    Galera FM (2000) Los algarrobos las especies del género prosopis (algarrobos) de América Latina con especial énfasis en aquellas de interés económico, FAO. SECYTGoogle Scholar
  68. 68.
    Meza S, R.y E, Osuna L (2003) Módulo del Proyecto Nacional de Mezquite en el Campo Experimental Todos Santos en Baja California Sur. INIFAP-CIRNOGoogle Scholar
  69. 69.
    Ward Chesworth (2008) Encyclopedia of Soil Science, ISBN 978-1-4020-3995-9, SpringerGoogle Scholar
  70. 70.
    Bioenergy Feedstock Development Programs (2010) Oak Ridge National Laboratory USA, https://bioenergy.ornl.gov/papers/misc/energy_conv.html
  71. 71.
    Pimentel D (ed) (2008) Biofuels, Solar and Wind as Renewable Energy Systems, Springer Science Business Media B.V.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Environmental Technology and Energy EconomicsHamburg University of TechnologyHamburgGermany

Personalised recommendations