Biomass Conversion and Biorefinery

, Volume 2, Issue 3, pp 253–263

Influence of operating conditions on the performance of biomass-based Fischer–Tropsch synthesis

  • Anca Sauciuc
  • Ziad Abosteif
  • Gerald Weber
  • Angela Potetz
  • Reinhard Rauch
  • Hermann Hofbauer
  • Georg Schaub
  • Lucia Dumitrescu
Original Article

Abstract

The environmental concerns and the European liquid (bio) fuel regulations have determined a growing demand on biofuels. Fischer–Tropsch synthesis can provide clean synthetic fuels containing low concentrations of sulfur, nitrogen, and aromatics. While Fischer–Tropsch synthesis using natural gas and coal is a well established and commercialized process for more than 70 years, the new technology of Fischer–Tropsch synthesis using biomass as feedstock is gaining more and more attention due to the possibilities of using renewable raw materials. In this work, in order to optimize the Fischer–Tropsch synthesis, the influence of operating conditions has been studied in a slurry reactor using a Co-based catalyst. Experiments were performed at different syngas composition (variation of H2/CO ratio) and pressure (24, 20, and 16 bar), keeping the other parameters (temperature, 230 °C; gas flow, 5 Nm3/h) constant. The effects of pressure on CO conversion, product distribution, C5+ selectivity, Par/Ole ratio, and α value were investigated, and the results were compared with data from literature. It was found that—increasing the reaction pressure—heavier hydrocarbons were formed, and CO conversion increased from 44.2 to 63.7 %. A slight change has been observed in the case of an α value between 0.89 and 0.9, C5+ selectivity between 90.6 and 91.7 %, and Par/Ole ratio between 11.4 and 14.1. An important role for the results obtained was attributed to H2/CO ratio variation during the experiments.

Keywords

Biomass Fischer–Tropsch synthesis Pressure influence CO conversion Product distribution 

Abbreviation

ASF model

Anderson–Schulz–Flory distribution

α value

Chain growth probability

FT

Fischer–Tropsch

FTR

Fischer–Tropsch reactor

GHG

Greenhouse gasses

C5+

Mass fraction of the products with carbon number higher than 5

Wn

Mass fraction of the Fischer–Tropsch products containing n carbon

PLC

Programmable logic controller

Par/Ole

The ratio between the paraffin and olefin from the Fischer–Tropsch products

Q

Volumetric flow of the gas (in normal cubic meters per hour)

References

  1. 1.
    de la Osa AR, De Lucas A, Romero A, Valverde JL, Sánchez P (2011) Fischer–Tropsch diesel production over calcium-promoted Co/alumina catalyst: effect of reaction conditions. Fuel 90:1935–1945CrossRefGoogle Scholar
  2. 2.
    Yan Z, Wang Z, Bukur DB, Goodman W (2009) Fischer–Tropsch synthesis on a model Co/SiO2 catalyst. J Catal 268:196–200CrossRefGoogle Scholar
  3. 3.
    Boerrigter H, den Uil H, Calis HP (2002) Green diesel from biomass via Fischer-Tropsch synthesis: new insights in gas cleaning and process design. ECN Organisation http://www.ecn.nl/fileadmin/ecn/units/bio/Overig/pdf/Fischer-Tropsch02.pdf. Accessed 18 Dec 2011. Paper presented at Pyrolysis and Gasification of Biomass and Waste, Strasbourg, France
  4. 4.
    Borg Ø, Hammer N, Enger BC, Myrstad R, Lindvåg OA, Eri S, Skagseth TH, Rytter E (2011) Effect of biomass-derived synthesis gas impurity elements on cobalt Fischer–Tropsch catalyst performance including in situ sulphur and nitrogen addition. J Catal 279:163–173CrossRefGoogle Scholar
  5. 5.
    Opdal OA (2006) Production of synthetic biodiesel via Fischer-Tropsch synthesis—biomass-to-liquids in Namdalen, Department of Energy & Process engineering, Norwegian University of Science and Technology, Trondheim, Norway http://www.zero.no/transport/biodrivstoff/btl-namdalen.pdf. Accessed 29 Nov 2011
  6. 6.
    Sari A, Zamani Y, Taheri SA (2009) Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor. Fuel Process Technol 90:1305–1313CrossRefGoogle Scholar
  7. 7.
    Steynberg AP, Dry ME (2004) Fischer-Tropsch technology. Studies in surface science and catalysis 152. Elsevier Science & Technology Books, Amsterdam, pp 623–676Google Scholar
  8. 8.
    de Klerk A, Furimsky E (2004) Catalysis in the refining of Fischer–Tropsch syncrude, RSC catalysis series 4. RSC Publishing, CambridgeGoogle Scholar
  9. 9.
    Pour AN, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA (2008) Study on products distribution of iron and iron–zeolites catalysts in Fischer–Tropsch synthesis. Fuel 87:2004–2012CrossRefGoogle Scholar
  10. 10.
    Visconti CG, Tronconi E, Lietti L, Zennaro R, Forzatti P (2007) Development of a complete kinetic model for the Fischer–Tropsch synthesis over Co/Al2O3 catalysts. Chem Eng Sci 62:5338–5343CrossRefGoogle Scholar
  11. 11.
    de Klerk A (2009) Can Fischer-Tropsch syncrude be refined to on-specification diesel fuel? Energy Fuel 23:4593–4604. doi:10.1021/ef9005884 CrossRefGoogle Scholar
  12. 12.
    Schablitzky HW, Lichtscheidl J, Hutter K, Hafner C, Rauch R, Hofbauer H (2011) Hydroprocessing of Fischer–Tropsch biowaxes to second-generation biofuels. Biomass Conv Bioref 1:29–37CrossRefGoogle Scholar
  13. 13.
    van Vliet OPR, Faaij APC, Turkenburg WC (2009) Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers Manage 50:855–876CrossRefGoogle Scholar
  14. 14.
    Moon G, Lee Y, Choi K, Jeong D (2010) Emission characteristics of diesel, gas to liquid, and biodiesel-blended fuels in a diesel engine for passenger cars. Fuel:3840–3846Google Scholar
  15. 15.
    Havlik P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalsky R, Aoki K, De Cara S, Kindemann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuels targets. Energy Policy 39:5690–5702CrossRefGoogle Scholar
  16. 16.
    Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580CrossRefGoogle Scholar
  17. 17.
    Hofbauer H (2008) Fischer-Tropsch-fuels and Bio-SNG. Österreichischer Biomasse-Verband http://www.biomasseverband.at/uploads/tx_osfopage//mediendatenbank/root01/3.%20Veranstaltungen/3.2%20Tagung/Mitteleuropaeische%20Biomassekonferenz%202008/0%20CEBC%202008%20Vortraege/Parallel7_Hofbauer_Hermann.pdf. Accessed 12 Oct 2010. Presented at: Central European Biomass Conference, Graz, Austria
  18. 18.
    Rauch R, Hofbauer H, Bosch K, Siefert I, Aichernig C, Tremmel H, Koch R, Lehner R (2004) Steam gasification of biomass at CHP plant Guessing—status of the demonstration plant. http://members.aon.at/biomasse/gue_rom.pdf. Accessed 19 July 2010. Presented at: 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy
  19. 19.
    Tavasoli A, Pour AN, Ahangari MG (2010) Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer–Tropsch synthesis catalyst. J Nat Gas Chem 19:653–659CrossRefGoogle Scholar
  20. 20.
    Tian L, Huo CF, Cao DB, Yang Y, Xu J, Wu BS, Xiang HW, Xu YY, Li YW (2010) Effects of reaction conditions on iron-catalyzed Fischer–Tropsch synthesis: a kinetic Monte Carlo study. J Mol Struct (THEOCHEM) 941:30–35CrossRefGoogle Scholar
  21. 21.
    Zheng S, Liu Y, Li J, Shi B (2007) Deuterium tracer study of pressure effect on product distribution in the cobalt-catalyzed Fischer–Tropsch synthesis. Appl Catal Gen 330:63–68CrossRefGoogle Scholar
  22. 22.
    Hao Q, Bai L, Xiang H, Li Y (2009) Activation pressure studies with an iron-based catalyst for slurry Fischer-Tropsch synthesis. J Nat Gas Chem 18:429–435CrossRefGoogle Scholar
  23. 23.
    Farias FEM, Sales FG, Fernandes FAN (2008) Effect of operating conditions and potassium content on Fischer–Tropsch liquid products produced by potassium-promoted iron catalysts. J Nat Gas Chem 17:175–178CrossRefGoogle Scholar
  24. 24.
    Ji YY, Xiang HW, Yang JL, Xu YY, Li YW, Zhong B (2001) Effect of reaction conditions on the product distribution during Fischer–Tropsch synthesis over an industrial Fe-Mn catalyst. Appl Catal Gen 314:77–86CrossRefGoogle Scholar
  25. 25.
    Anderson RB, Friedel RA, Storch HH (1951) Fischer–Tropsch reaction mechanism involving stepwise growth of carbon chain. J Chem Phys 19:313–319CrossRefGoogle Scholar
  26. 26.
    Puskas I, Hulbut RS (2001) Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catal Today 84:99–109CrossRefGoogle Scholar
  27. 27.
    Liu Y, Teng BT, Guo XH, Li Y, Chang J, Tian L, Hao X, Wang Y, Xiang HW, Xu YY, Li YW (2007) Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer–Tropsch synthesis. J Mol Catal A Chem 272:182–196CrossRefGoogle Scholar
  28. 28.
    Sharifnia S, Mortazavi Y, Khodadadi A (2005) Enhancement of distillate selectivity in Fischer–Tropsch synthesis on a Co/SiO2 catalyst by hydrogen distribution along a fixed-bed reactor. Fuel Process Technol 86:1253–1264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anca Sauciuc
    • 1
    • 2
  • Ziad Abosteif
    • 3
  • Gerald Weber
    • 4
  • Angela Potetz
    • 5
  • Reinhard Rauch
    • 4
  • Hermann Hofbauer
    • 5
  • Georg Schaub
    • 3
  • Lucia Dumitrescu
    • 1
    • 2
  1. 1.Department of Renewable Energy Systems and RecyclingTransilvania University of BrasovBrasovRomania
  2. 2.Department of Chemistry and EnvironmentTransilvania University of BrasovBrasovRomania
  3. 3.Engler-Bunte InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Bioenergy 2020+GüssingAustria
  5. 5.Institute of Chemical EngineeringVienna University of TechnologyViennaAustria

Personalised recommendations