Process comparison of biomass-to-liquid (BtL) routes Fischer–Tropsch synthesis and methanol to gasoline

  • Maria Iglesias Gonzalez
  • Bettina Kraushaar-Czarnetzki
  • Georg Schaub
Review Article


Lignocellulosic biomass is currently seen as a renewable alternative to fossil fuels in the transport sector. There are two possible routes to produce liquid hydrocarbon fuels from biomass via synthesis gas: Fischer–Tropsch (FT) synthesis and methanol to gasoline (MtG). This paper evaluates, based on chemistry and chemical engineering aspects, the process design, the economic feasibility and the process potential for both synthesis routes. FT and MtG reactions can be described under the same overall chemical equation. However, the differences between the two syntheses were found in chemical mechanism, catalyst and product distribution. The material and energy balances do not establish a clear preference for any synthesis route, the market application of the product being a key parameter. The calculated overall chemical energy efficiencies to synthetic liquid hydrocarbons (C5–C20) from biomass are 25.8–46.5% for FT and 23.4–44.4% for MtG. The calculated carbon efficiency to synthetic liquid hydrocarbons (C5–C20) ranges between 18.6% and 33.5% for FT and 17.3–32.8% for MtG. The production costs for synthetic liquid hydrocarbon fuels are calculated based on the efficiencies given above. They range between 21€ and 34€ per gigajoule. These values could drop to 18–28€ per gigajoule in the medium term based on optimistic predictions (increase of efficiencies and reduction of capital investment). If the prize difference between crude oil and biomass becomes as high as 20€ per gigajoule, the production of liquid hydrocarbons from biomass will probably become competitive with petroleum-based products.


Fischer–Tropsch Methanol to gasoline Biomass Material and energy balance 





Biomass to liquids


Coal to liquids






Gas to liquids


High heating value (MJ/kg)


Low-temperature Fischer–Tropsch


Methanol to gasoline


Carbon number


New Zealand


Chain propagation rate


Change termination rate


Molar fraction of a lump of hydrocarbons in mole C


Molar fraction of component i


Conversion of component i


Chain growth propagation





The authors gratefully acknowledge financial support from the Fachagentur Nachwachsende Rohstoffe (Methanol-to-Hydrocarbons, FKZ 220-086-07)


  1. 1.
    IEA (2009) Transport, Energy and CO2. Moving towards sustainability. International Energy Agency. Accessed 16 November 2010
  2. 2.
    Dabelstein W, Reglitzky A, Schütze A, Reders K (2008) Automotive fuels. In: Elvers B (ed) Handbook of fuels: energy sources for transportation, Chapter 3. Wiley-VCH, Weinheim 97–197Google Scholar
  3. 3.
    Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Explorations of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass and Bioenergy 23:129–152CrossRefGoogle Scholar
  4. 4.
    Henrich E, Dinjus E (2003) Pyrolysis and gasification of biomass and waste. Proceedings of Expert Meeting, Strasbourg 2002. CPL Press, Newbury, p 511Google Scholar
  5. 5.
    Althapp A (2003) Synthetic transportation fuels from biomass via Fischer–Tropsch synthesis—principles and perspectives. Paper presented at the Conference “Regenerative Kraftstoffe”, November 13–14, Stuttgart, Germany, pp 218–227Google Scholar
  6. 6.
    Hofbauer H, Rauch R, Foscolo P, Matera D (2000) Hydrogen rich gas from biomass steam gasification. Paper presented at 1st World Conference on Biomass for Energy and Industry, Proceedings 1999–2001Google Scholar
  7. 7.
    Van der Meijden CM, van der Drift A, Vreugdenhil BJ (2007) Experimental results from the Allothermal Biomass Gasifier Milena. Paper presented at the 15th European Biomass Conference, May 7–11, Berlin, GermanyGoogle Scholar
  8. 8.
    Dena (2006) Biomass-to-liquid BtL. Realisierungsstudie (Summary). Final Report (Deutsche Energie-Agentur)Google Scholar
  9. 9.
    Choren (2010). Accessed 16 November 2010
  10. 10.
    Makino E, Gray D (2001) Coal liquefaction. In: Ullmann’s Encyclopedia of Industrial Chemistry, Chapter 2. Accessed 16 November 2010
  11. 11.
    Schulz H (2003) Major and minor reactions in Fischer–Tropsch synthesis on cobalt catalysts. Top Catal 1–4:73–85CrossRefGoogle Scholar
  12. 12.
    Van der Laan AB (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catalysis Rev 41:255–318CrossRefGoogle Scholar
  13. 13.
    Wender I (1996) Reactions of synthesis gas. Fuel Processing Technology 48:189–297CrossRefGoogle Scholar
  14. 14.
    Steynberg A, Dry M (2004) Chemical concepts used for engineering purposes (edited by Steynberg A, Dry M). Stud Surf Sci Catal 152:196–257Google Scholar
  15. 15.
    Eilers J, Posthuma SA, Sie ST (1990) The Shell Middle distillate synthesis process (SMDS). Catal Lett 7:253–270CrossRefGoogle Scholar
  16. 16.
    Weitkamp J, Jacobs PA, Martens JA (1983) Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite. Applied Catalysis 8:123–141CrossRefGoogle Scholar
  17. 17.
    De Klerk A (2008) Fischer–Tropsch refining. Dissertation, University of Pretoria, South AfricaGoogle Scholar
  18. 18.
    Sie ST, Senden MMG, Van Wechem HMH (1991) Conversion of natural gas to transportation fuels via the Shell Middle distillate synthesis process. Catalysis Today 8:371–394CrossRefGoogle Scholar
  19. 19.
    Hoeck A (2006) The Shell GTL process. Towards a world scale project in Qatar: The Pearl Project. DGMK-Conference “Synthesis gas Chemistry”, October 4–6, DresdenGoogle Scholar
  20. 20.
    Dry ME (2002) The Fischer Tropsch process: 1950–2000. Catalysis Today 71:227–241CrossRefGoogle Scholar
  21. 21.
    Deutsches Institut für Normung (2009) DIN EN 590. Beuth Verlag, BerlinGoogle Scholar
  22. 22.
    Kvisle S, Fuglerud T, Kolboe S, Olsbye U, Lillerud K, Vora B (2008) Methanol to hydrocarbons. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, electronic version. Wiley-VCH, Weinheim, pp 2950–2965Google Scholar
  23. 23.
    Stöcker M (1998) Methanol-to-hydrocarbons: catalytic materials and their behaviour. Microporous and Mesoporous Materials 29:3–48CrossRefGoogle Scholar
  24. 24.
    Zhao X, McGihon R, Tabak S (2008). ExxonMobil’s methanol to gasoline (MTG) technology for the production of clean gasoline from coal. Hydrocarbon engineering, Coal to clean gasoline. Accessed 2 November 2010
  25. 25.
    Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Colorado NREL/TP-510-34929Google Scholar
  26. 26.
    Olsbye U, Bjorgen M, Svellle S, Lillerud K, Kolboe S (2005) Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today 106:108–111CrossRefGoogle Scholar
  27. 27.
    Maxwell IE, Stork WHJ (2001) Hydrocarbon processing with zeolites. In: van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Introduction to zeolite science and practice. Studies in Surface Science and Catalysis 137, Chap 17Google Scholar
  28. 28.
    Gierlich H, Dolkemeyer W, Avidan A, Thiagarajan N (1986) Umwandlung von Methanol zu Benzin nach dem Wirbelbett-Verfahren. Chem.-Ing.-Tech.58 Nr 3 238–239Google Scholar
  29. 29.
    Exxon Mobil (2009) An alternative for liquid fuel production. Gasification Technology ConferenceGoogle Scholar
  30. 30.
    Schreiner M (1978) Research guidance studies to assess gasoline from coal by methanol-to-gasoline and Sasol-type Fischer–Tropsch technologies. Report No. FE-2447-13, U.S. Department of Energy, WashingtonGoogle Scholar
  31. 31.
    Probstein H (1990) Synthetic fuels. Dover, New YorkGoogle Scholar
  32. 32.
    Deutsches Institut für Normung (2008) DIN EN 228. Beuth Verlag, BerlinGoogle Scholar
  33. 33.
    Perry (1984) Perry’s chemical engineers’ handbook, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Leckel D (2009) Diesel production from Fischer–Tropsch: the past, the present and new concepts. Energy and Fuels 23:2342–2358CrossRefGoogle Scholar
  35. 35.
    Boie W (1953) Beiträge zum feuerungstechnischen Rechnen—Teil 1: Ableitung neuer Heizwertformeln mit umfassendem Gültigkeitsbereich. Energietechnik 3:309–316Google Scholar
  36. 36.
    Meunier J (1962) Vergasung fester Brennstoffe und oxidative Umwandlung von Kohlenwasserstoffen. Verlag Chemie, WeinheimGoogle Scholar
  37. 37.
    America’s Energy Future Panel on Alternative Liquid Transportation fuels, National Academy of Science, National Academy of Engineering, National Research Council (2009) Liquid Transportation fuels from coal and biomass. Technological status, costs and environmental impacts. Accessed 13 December 2010
  38. 38.
    Methanex (2010) Accessed 12 November 2010
  39. 39.
    European Commission Energy (2010) Accessed 24 January 2010
  40. 40.
    Rostrup-Nielsen et al (2007) Polygeneration–integration of gasoline synthesis and IGCC power production using Topsoe’s TIGAS process. In: Sonderberg PL, Larsen H (eds) Conference Proceedings, Energy Solutions for Sustainable Development, Roskilde, Denmark. RisØ-R-1608 (EN)Google Scholar
  41. 41.
    Stahlschmidt R (2010) Evaluierung aktueller BtL-Prozesse. Technische Universität Bergakademie Freiberg, 4th BtL-Congress, 1–2 December, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maria Iglesias Gonzalez
    • 1
  • Bettina Kraushaar-Czarnetzki
    • 2
  • Georg Schaub
    • 1
  1. 1.Engler-Bunte-Institut, Fuel Chemistry and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Chemical Process EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations