Advertisement

Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter \({\varvec{\alpha }}\)

  • S. A. MohiuddineEmail author
  • Faruk Özger
Original Paper
  • 13 Downloads

Abstract

We construct the Stancu variant of Bernstein–Kantorovich operators based on shape parameter \(\alpha \). We investigate the rate of convergence of these operators by means of suitable modulus of continuity to any continuous functions f(x) on \(x\in [0,1]\) and Voronovskaja-type approximation theorem. Moreover, we study other approximation properties of our new operators such as weighted approximation as well as pointwise convergence. Finally, some illustrative graphics are provided here by our new Stancu-type Bernstein–Kantorovich operators in order to demonstrate the significance of our operators.

Keywords

Bernstein–Kantorovich operators Rate of convergence Weighted approximation Pointwise convergence 

Mathematics Subject Classification

Primary 41A25 Secondary 41A35 41A36 

Notes

References

  1. 1.
    Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 450, 244–261 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Kharkov Math. Soc. 13, 1–2 (1912/1913)Google Scholar
  3. 3.
    Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 40, 7749–7759 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p, q)\)-Bernstein operators. Iran. J. Sci. Technol. Trans. Sci. 42, 1459–1464 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Özger, F.: Weighted statistical approximation properties of univariate and bivariate \(\lambda \)-Kantorovich operators. Filomat 33(11), 3473–3486 (2019)Google Scholar
  6. 6.
    Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p, q)\)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol. Trans. Sci. 42, 655–662 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p, q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Acu, A.M., Muraru, C.: Approximation properties of bivariate extension of \(q\)-Bernstein-Schurer-Kantorovich operators. Results Math. 67, 265–279 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cai, Q.-B.: The Bézier variant of Kantorovich type \(\lambda \)-Bernstein operators. J. Inequal. Appl. 2018, 90 (2018)CrossRefGoogle Scholar
  10. 10.
    Kajla, A., Acar, T.: Blending type approximation by generalized Bernstein-Durrmeyer type operators. Miskolc Math. Notes 19(1), 319–336 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kajla, A., Miclăuş, D.: Blending type approximation by GBS operators of generalized Bernstein-Durrmeyer type. Results Math. 73, 1 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Aral, A., Erbay, H.: Parametric generalization of Baskakov operators. Math. Commun. 24, 119–131 (2019)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nasiruzzaman, M., Rao, N., Wazir, S., Kumar, R.: Approximation on parametric extension of Baskakov-Durrmeyer operators on weighted spaces. J. Inequal. Appl. 2019, 103 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Stancu, D.D.: Asupra unei generalizari a polinoamelor lui Bernstein. Studia Univ. Babes-Bolyai Ser. Math.-Phys 14, 31–45 (1969)Google Scholar
  15. 15.
    Baxhaku, B., Agrawal, P.N.: Degree of approximation for bivariate extension of Chlodowsky-type \(q\)-Bernstein-Stancu-Kantorovich operators. Appl. Math. Comput. 306, 56–72 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p, q)\)-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cai, Q.-B., Lian, B.-Y., Zhou, G.: Approximation properties of \(\lambda \)-Bernstein operators. J. Inequal. Appl. 2018, 61 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 112(1), 135–151 (2018)CrossRefGoogle Scholar
  19. 19.
    Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p, q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein-Durrmeyer operators. J. Inequal. Appl. 2018, 104 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mursaleen, M., Ansari, K.J., Khan, A.: On \((p, q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2018). (Erratum in Appl. Math. Comput. 278 (2016) 70-71)Google Scholar
  22. 22.
    Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p, q)\)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264, 392–402 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter \(\lambda \). Symmetry 11(3), Article 316 (2019)CrossRefGoogle Scholar
  24. 24.
    Mishra, V.N., Patel, P.: On generalized integral Bernstein operators based on \(q\)-integers. Appl. Math. Comput. 242, 931–944 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Özger, F.: On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat 69(1), 376–393 (2020)Google Scholar
  26. 26.
    Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., RACSAM 113(3), 1955–1973 (2019)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p, q)\)-gamma function and related approximation theorems. Results Math. 73(1), Article 9 (2018)Google Scholar
  28. 28.
    Mohiuddine, S.A., Hazarika, B., Alghamdi, M.A.: Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat 33(14), 4549–4560 (2019)Google Scholar
  29. 29.
    Mohiuddine, S.A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48, 492–506 (2019)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219, 9821–9826 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)CrossRefGoogle Scholar
  32. 32.
    Ditzian, Z., Totik, V.: Moduli of Smoothness, Springer Series in Computational Mathematics, vol. 9. Springer, New York (1987)zbMATHGoogle Scholar
  33. 33.
    Lenze, B.: On Lipschitz-type maximal functions and their smoothness spaces. Indag. Math. 91, 53–63 (1988)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kantorovich, L.V.: Sur certains développements suivant les polynômes de la forme de S. Bernstein I, II. C. R. Acad. URSS 563–568, 595–600 (1930)Google Scholar
  35. 35.
    Barbosu, D.: Kantorovich–Stancu type operators. J. Inequal. Pure Appl. Math. 5(3), Article 53 (2004)Google Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2020

Authors and Affiliations

  1. 1.Department of General Required Courses, Mathematics, Faculty of Applied StudiesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Operator Theory and Applications Research Group, Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Engineering Sciencesİzmir Katip Çelebi UniversityIzmirTurkey

Personalised recommendations