Advertisement

Degenerate central factorial numbers of the second kind

  • Taekyun KimEmail author
  • Dae San Kim
Original Paper

Abstract

In this paper, we introduce the degenerate central factorial polynomials and numbers of the second kind which are degenerate versions of the central factorial polynomials and numbers of the second kind. We derive some properties and identities for those polynomials and numbers. We obtain, among other things, recursive formulas for the degenerate central factorial polynomials and numbers of the second kind. Recently, Dolgy and Kim (Proc Jangjeon Math Soc 21(2):309–317, 2018) obtained some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. This paper motivated our to do this research.

Keywords

Degenerate central factorial numbers of the second kind Degenerate central factorial polynomials of the second kind 

Mathematics Subject Classification

Primary 11B83 Secondary 11B75 

Notes

References

  1. 1.
    Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51–88 (1979)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Carlitz, L.: A degenerate Staudt–Clausen theorem. Arch. Math. (Basel) 7, 28–33 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ustinov, A.V.: Korobov polynomials and umbral analysis. Chebyshevskiĭ Sb. 48, 137–152 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Korobov, N.M.: Special polynomials and their applications. Diophantine Approx. 2, 77–89 (1996)MathSciNetGoogle Scholar
  5. 5.
    Jeong, J., Rim, S.-H., Kim, B.M.: On finite-times degenerate Cauchy numbers and polynomials. Adv. Differ. Equ. 2015, 321 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Park, J.-W., Kim, B.M., Kwon, J.: On a modified degenerate Daehee polynomials and numbers. J. Nonlinear Sci. Appl. 103, 1108–1115 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, W.P.: Some identities involving the Euler and central factorial numbers. Fibonacci Q. 36, 154–157 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dolgy, D.V., Kim, T.: Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. Proc. Jangjeon Math. Soc. 21(2), 309–317 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kim, T., Kim, D.S.: Differential equations associated with degenerate Changhee numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM.  https://doi.org/10.1007/s13398-018-0576-y
  11. 11.
    Kim, T., Kim, D.S., Jang, G.-W.: Central complete and incomplete Bell polynomials I. Symmetry 2019(11), 288 (2019).  https://doi.org/10.3390/sym11,20288 CrossRefzbMATHGoogle Scholar
  12. 12.
    Kim, T., Jang, G.-W.: A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 28(2), 207–214 (2018)zbMATHGoogle Scholar
  13. 13.
    Lee, J.G., Jang, L.-C.: On modified degenerate Carlitz q-Bernoulli numbers and polynomials. Adv. Differe. Equ. 2017, 22 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions (Revised and Enlarged Edition). D. Reidel Publishing Company, Dordrecht (1974)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, T., Kim, D.S.: Central Bell numbers and polynomials. Russ. J. Math. Phys. (2019) (in press) Google Scholar
  16. 16.
    Charalambides, ChA: A central factorial numbers and related expansions. Fibonacci Q. 195, 451–456 (1981)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kim, T.: A note on central factorial numbers. Proc. Jangjeon Math. Soc. 214, 575–588 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Roman, S.: The Umbral Calculus. Academic Press, New York (1984)zbMATHGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Department of MathematicsKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Department of MathematicsSogang UniversitySeoulRepublic of Korea

Personalised recommendations