On successive minima-type inequalities for the polar of a convex body

  • Martin HenkEmail author
  • Fei Xue
Original Paper


Motivated by conjectures of Mahler and Makai Jr., we study bounds on the volume of a convex body in terms of the successive minima of its polar body.


Successive minima Polar body Difference body Mahler conjecture 

Mathematics Subject Classification

52C05 52C07 11H06 



We are very grateful to the referee for the careful reading of the paper and for his/her comments and detailed suggestions which helped us to improve considerably the manuscript.


  1. 1.
    Álvarez Paiva, J.C., Balacheff, F., Tzanev, K.: Isosystolic inequalities for optical hypersurfaces. Adv. Math. 301, 934–972 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Eggleston, H.G.: Note on a conjecture of L. Santalò Math. 8, 63–65 (1961)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fejes Tóth, G., Jr. Makai, E.: On the thinnest non-separable lattice of convex plates. Stud. Sci. Math. Hung. 9, 191–193 (1974)MathSciNetzbMATHGoogle Scholar
  4. 4.
    González Merino, B., Schymura, M.: On densities of lattice arrangements intersecting every \(i\)-dimensional affine subspace. Discrete Comput. Geom. 58(3), 663–685 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam (1987)zbMATHGoogle Scholar
  7. 7.
    Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Henk, M., Henze, M., Hernández Cifre, M.A.: On extensions of Minkowski’s theorem on successive minima. Forum Math. 28(2), 311–326 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iriyeh, H., Shibata, M.: Symmetric Mahler’s conjecture for the volume product in the three dimensional case, arXiv:1706.01749v2
  10. 10.
    Kuperberg, G.: From the Mahler conjecture to Gauss linking integrals. Geom. Funct. Anal. 18(3), 870–892 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mahler, K.: Ein minimalproblem für konvexe polygone. Math. (Zutphen) B 7, 118–127 (1939)zbMATHGoogle Scholar
  12. 12.
    Mahler, K.: Ein Übertragungsprinzip für konvexe Körper. Časopis Pěst 68, 93–102 (1939)zbMATHGoogle Scholar
  13. 13.
    Mahler, K.: Polar analogues of two theorems by Minkowski. Bull. Austral. Math. Soc 11, 121–129 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Makai Jr., E.: On the thinnest non-separable lattice of convex bodies. Stud. Sci. Math. Hung. 13, 19–27 (1978)zbMATHGoogle Scholar
  15. 15.
    Makai Jr., E., Martini, H.: Density estimates for \(k\)-impassable lattices of balls and general convex bodies in \({\mathbb{R}}^n\), arXiv:1612.01307v1
  16. 16.
    Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig-Berlin, 1896, reprinted by Johnson Reprint Corp., New York, (1968)Google Scholar
  17. 17.
    Schneider, R.: Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, expanded edition, (2014)Google Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations