General multidimensional fractional Iyengar type inequalities

  • George A. AnastassiouEmail author
Original Paper


Here we derive a variety of general multivariate fractional Iyengar type inequalities for not necessarily radial functions defined on the shell and ball. Our approach is based on the polar coordinates in \({\mathbb {R}}^{N}\), \( N\ge 2\), and the related multivariate polar integration formula. Via this method we transfer author’s univariate fractional Iyengar type inequalities into general multivariate fractional Iyengar inequalities.


Iyengar inequality Polar coordinates Not necessarily radial function Shell and ball Fractional derivatives 

Mathematics Subject Classification

26A33 26D10 26D15 



  1. 1.
    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anastassiou, G.A.: Fractional Differentiation Inequalities. Research Monograph. Springer, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Anastassiou, G.A.: On right fractional calculus. Chaos Solitons Fractals 42, 365–376 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anastassiou, G.A.: Intelligent Mathematical Computational Analysis. Springer, Heidelberg, New York (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Anastassiou, G.A.: Mixed conformable fractional approximation by sublinear operators. Indian J. Math. 60(1), 107–140 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Anastassiou, G.A.: Canavati fractional Iyengar type inequalities, Analele Universitatii Oradea. Fasc. Matematica, Accepted (2018)Google Scholar
  7. 7.
    Anastassiou, G. A.: Caputo fractional Iyengar type inequalities, submitted (2018)Google Scholar
  8. 8.
    Anastassiou, G.A.: Conformable fractional Iyengar type inequalities, submitted (2018)Google Scholar
  9. 9.
    Canavati, J.A.: The Riemann–Liouville integral. Nieuw Archief Voor Wiskunde 5(1), 53–75 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Iyengar, K.S.K.: Note on an inequality. Math. Student 6, 75–76 (1938)zbMATHGoogle Scholar
  11. 11.
    Rudin, W.: Real and Complex Analysis. International Student edition. Mc Graw Hill, London, New York (1970)Google Scholar
  12. 12.
    Stroock, D.: A Concise Introduction to the Theory of Integration, 3rd edn. Birkhaüser, Boston, Basel, Berlin (1999)zbMATHGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations