Advertisement

Degenerate central Bell numbers and polynomials

  • Taekyun KimEmail author
  • Dae San Kim
Original Paper
  • 18 Downloads

Abstract

Here we study the degenerate central Bell numbers and polynomials as a degenerate version of the recently introduced central Bell numbers and polynomials, which are motivated by Zhang’s work ‘Some identities involving the Euler and the central factorial numbers’ (Zhang in Fibonacci Quart 36(2):154–157, 1998) and we derive some properties, identities, and recurrence relations for these numbers and polynomials. In particular, we find various expressions for the degenerate central Bell numbers and polynomials.

Keywords

Central factorial numbers Bell numbers Degenerate central Bell polynomials 

Mathematics Subject Classification

11B68 11B73 11B83 05A68 

Notes

References

  1. 1.
    Bouroubi, S., Abbas, M.: New identities for Bell’s polynomials. New approaches. Rostock Math. Kolloq. 61, 49–55 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Carlitz, L.: Some remarks on the Bell numbers. Fibonacci Quart. 18(1), 66–73 (1980)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Carlitz, L., Riordan, J.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51–88 (1979)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Comtet, L.: Advanced Combinatorics: the art of finite and infinite expansions (translated from the French by J. W. Nienhuys), Revised and enlarged edition. D. Reidel Publishing Company, Dordrecht and Boston (1974)Google Scholar
  5. 5.
    Kim, D.S., Kim, T.: On degenerate Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 111(2), 435–446 (2017)Google Scholar
  6. 6.
    Kim, D.S., Kim, T.: Some identities of Bell polynomials. Sci. China Math. 58(10), 2095–2104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kim, D.S., Kwon, J., Dolgy, D.V., Kim, T.: On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 21(4), 589–598 (2018)Google Scholar
  8. 8.
    Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20(3), 319–331 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kim, T.: Degenerate complete Bell polynomials and numbers. Proc. Jangjeon Math. Soc. 20(4), 533–543 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kim, T.: A note on central factorial numbers. Proc. Jangjeon. Math. Soc. 21(4), 575–588 (2018)Google Scholar
  11. 11.
    Kim, T., Kim, D.S.: Degenerate central factorial numbers of the second kind (communicated)Google Scholar
  12. 12.
    Kim, T., Kim, D.S.: A note on central Bell numbers and polynomials, Russ. J. Math. Phys. 26 (2019) (in press)Google Scholar
  13. 13.
    Kim, T., Kim, D.S.: Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. (2018).  https://doi.org/10.1007/s11425-018-9338-5
  14. 14.
    Kim, T., Kim, D.S., Dolgy, D.V.: On partially degenerate Bell numbers and polynomials. Proc. Jangjeon Math. Soc. 20(3), 337–315 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kolbig, K.S.: The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind. J. Comput. Appl. Math. 51(1), 113–116 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, W.: Some identities involving the Euler and the central factorial numbers. Fibonacci Quart. 36(2), 154–157 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Department of MathematicsKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Department of MathematicsSogang UniversitySeoulRepublic of Korea

Personalised recommendations