The concept of coordinate strongly convex functions and related inequalities

  • Muhammad Adil KhanEmail author
  • Syed Zaheer Ullah
  • Yu-Ming ChuEmail author
Original Paper


In this paper, we introduce a new class of functions known as coordinate strongly convex functions. We discuss the relation between strongly convex functions and coordinate strongly convex functions. Also, we present some natural properties of coordinate strongly convex functions. We present Slater’s, Jensen’s and converse of the Jensen inequalities in discrete as well as integral versions for coordinate strongly convex functions. Furthermore, we present Hermite–Hadamard’s type inequalities for coordinate strongly convex functions.


Coordinate strongly convex function Jensen’s inequality Slater’s inequality 

Mathematics Subject Classification

Primary 26D15 26A51 Secondary 39B62 



The research was supported by the Natural Science Foundation of China (Grant Nos. 61373169, 11701176, 11601485 ) and the Science and Technology Research Program of Zhejiang Educational Committee (Grant no. Y201635325). The third author Yu-Ming Chu is the corresponding author of the article. The authors would like to express their sincere thanks to anonymous referees for their valuable suggestions and comments which helped the authors to improve this article substantially.


  1. 1.
    Abramovich, S.: Convexity, subadditivity and generalized Jensen’s inequality. Ann. Funct. Anal. 4, 183–194 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adamek, M.: On a problem connected with strongly convex functions. Math. Inequal. Appl. 19(4), 1287–1293 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Anastassiou, G.A.: Basic and \(s\)-convexity Ostrowski and Grüss type inequalities involving several functions. Commun. Appl. Anal. 17, 189–212 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Adil Khan, M., Ali, T., Kiliçman, A., Din, Q.: Refinements of Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Filomat. 3(30), 803–814 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Adil Khan, M., Khan, G. A., Ali, T., Batbold, T., Kiliçman, A.: Further refinement of Jensen’s type inequalities for the function defined on the rectangle, Abstr. Appl. Anal. 1–8 (2013)Google Scholar
  6. 6.
    Adil Khan, M., Khan, G.A., Ali, T., Kiliçman, A.: On the refinement of Jensen’s inequality. Appl. Math. Comput. 262, 128–135 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Adil Khan, M., Khan, J., Pečarić, J.: Generalization of Jensen’s and Jensen-Steffensen’s inequalities by generalized majorization theorem. J. Math. Inequal. 11(4), 1049–1074 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Adil Khan, M., Pečarić, J.: On Slater’s integral inequality. J. Math. Inequal. 5(2), 231–241 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Adil Khan, M., Zaheer Ullah, S., Reza Moradi, Hamid.: Jensen type inequalities for strongly convex functions, (submitted) Google Scholar
  10. 10.
    Banić, S., Bakula, M.K.: Jensen’s inequality for functions superquadratic on the coordinates. J. Math. Inequal. 9(4), 1365–1375 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bakula, M.K., Nikodem, K.: On the converse Jensen inequality for strongly convex functions. J. Math. Anal. Appl. 434, 516–522 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bakula, M.K., Pečarić, J.: On the Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 10, 1271–1292 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Definetti, B.: Sulla stratificazioni convesse. Ann. Math. Pura. Appl. 30, 173–183 (1949)CrossRefGoogle Scholar
  14. 14.
    Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5, 775–778 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dragomir, S. S.: Inequalities of Hermite-Hadamard type for \(\varphi \)-convex functions, Preprint RGMIA Res. Rep. Coll. 16, 14, Art. 87, (2013).
  16. 16.
    Dragomir, S. S.: Inequalities of Hermite–Hadamard type for \(\lambda \)-convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17, 18 Art. 13, (2014).
  17. 17.
    Dragomir, S.S., Adil Khan, M., Abathun, A.: Refinement of Jensen’s integral inequality. Open Math. 14, 221–228 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hyers, D.H., Ulam, S.M.: Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828 (1952)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jensen, J.L.W.V.: On konvexe funktioner og uligheder mellem middlvaerdier. Nyt. Tidsskr. Math. B. 16, 49–69 (1905)zbMATHGoogle Scholar
  20. 20.
    Mangasarian, O.L.: Pseudo-Convex functions. SIAM J. Control 3, 281–290 (1965)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequat. Math. 80, 193–199 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moradi, H. R., Omidvar, M. E., Adil Khan, M., Nikodem, K.: Around Jensen’s inequality for strongly convex functions, Aequat. Math. (2017).
  23. 23.
    Nikodem, K.: On Strongly Convex Functions and Related Classes of Functions. Handbook of Functional Equations, pp. 365–405. Springer, New York (2014)zbMATHGoogle Scholar
  24. 24.
    Özdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via \((\alpha, m)\)-convexity. Comput. Math. Appl. 61, 2614–2620 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966)Google Scholar
  26. 26.
    Pečarić, J., Proschan, F., Tong, Y.L.: Convex functions, partial orderings, and statistical applications. Academic Press, New York (1992)zbMATHGoogle Scholar
  27. 27.
    Song, Y-Qing., Adil Khan, M., Zaheer Ullah, S., Chu, Yu-Ming.: Integral inequalities involving strongly convex functions, Journal of Function Spaces. 2018 (2018) Article ID 6595921Google Scholar
  28. 28.
    Rajba, T.: On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order. Math. Inequal. Appl. 18, 267–293 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, NewYork (1973)zbMATHGoogle Scholar
  30. 30.
    Set, E., Özdemir, M. E., Dragomir, S. S.: On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 12 (2010) Art. ID 286845Google Scholar
  31. 31.
    Varošanec, S.: On \(h\)-convexity. J. Math. Anal. Appl. 326, 303–311 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2018

Authors and Affiliations

  1. 1.College of ScienceHunan City UniversityYiyangChina
  2. 2.Department of MathematicsUniversity of PeshawarPeshawarPakistan
  3. 3.Department of MathematicsHuzhou UniversityHuzhouChina

Personalised recommendations