Cohomological tautness of singular Riemannian foliations

  • José Ignacio Royo PrietoEmail author
  • Martintxo Saralegi-Aranguren
  • Robert Wolak
Original Paper


For a Riemannian foliation \({\mathcal {F}}\) on a compact manifold M, J. A. Álvarez López proved that the geometrical tautness of \({\mathcal {F}}\), that is, the existence of a Riemannian metric making all the leaves minimal submanifolds of M, can be characterized by the vanishing of a basic cohomology class \({\varvec{\kappa }}_M\in H^1(M/{\mathcal {F}})\) (the Álvarez class). In this work we generalize this result to the case of a singular Riemannian foliation \({\mathcal {K}}\) on a compact manifold X. In the singular case, no bundle-like metric on X can make all the leaves of \({\mathcal {K}}\) minimal. In this work, we prove that the Álvarez classes of the strata can be glued in a unique global Álvarez class \({\varvec{\kappa }}_X\in H^1(X/{\mathcal {K}})\). As a corollary, if X is simply connected, then the restriction of \({\mathcal {K}}\) to each stratum is geometrically taut, thus generalizing a celebrated result of E. Ghys for the regular case.


Singular Riemannian foliations Foliations Tautness 

Mathematics Subject Classification

53C12 57R30 37C85 



The authors wish to thank the referees for their useful remarks and suggestions.


  1. 1.
    Alvarez López, J.A.: The basic component of the mean curvature of Riemannian foliations. Ann. Glob. Anal. Geom. 10(2), 179–194 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandrino, M.M., Radeschi, M.: Closure of singular foliations: the proof of Molino’s conjecture. Compos. Math. 153(12), 2577–2590 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boualem, H., Molino, P.: Modèles locaux saturés de feuilletages riemanniens singuliers. C. R. Acad. Sci. Paris Sér. I Math. 316(9), 913–916 (1993)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Carrière, Y.: Flots riemanniens. Astérisque 116, 31–52 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cairns, G., Escobales Jr., R.H.: Further geometry of the mean curvature one-form and the normal plane field one-form on a foliated Riemannian manifold. J. Austral. Math. Soc. Ser. A 62(1), 46–63 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Domínguez, D.: Finiteness and tenseness theorems for Riemannian foliations. Am. J. Math. 120(6), 1237–1276 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ghys, É.: Feuilletages riemanniens sur les variétés simplement connexes. Ann. Inst. Fourier (Grenoble) 34(4), 203–223 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haefliger, A: Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 412, Springer, Berlin, 1973, pp. 239–260. Lecture notes in math., vol. 317Google Scholar
  9. 9.
    Haefliger, A.: Some remarks on foliations with minimal leaves. J. Differ. Geom. 15(2), 269–284 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hector, G., Hirsch, U.: Introduction to the geometry of foliations. Part A, 2nd ed. In: Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy. Aspects of Mathematics, vol. 1. Friedr. Vieweg & Sohn, Braunschweig (1986)Google Scholar
  11. 11.
    Kamber, F. W., Tondeur, P.: Foliations and metrics, In: Differential geometry (College Park, Md., 1981/1982), Progr. Math., vol. 32, Birkhäuser Boston, Boston, MA, 1983, pp. 103–152Google Scholar
  12. 12.
    Kamber, F.W., Tondeur, P.: Duality theorems for foliations. Astérisque 116, 108–116 (1984)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Masa, X.: Duality and minimality in Riemannian foliations. Comment. Math. Helv. 67(1), 17–27 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. (N.S.) 49(4), 475–506 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Molino, P.: Riemannian foliations, Progress in Mathematics, vol. 73. Birkhäuser Boston Inc, Boston, MA (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Miquel, V., Wolak, R.A.: Minimal singular Riemannian foliations. C. R. Math. Acad. Sci. Paris 342(1), 33–36 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nozawa, H.: Rigidity of the Álvarez class. Manuscr. Math. 132(1–2), 257–271 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nozawa, H.: Haefliger cohomology of Riemannian foliations. ArXiv e-prints (2012)Google Scholar
  19. 19.
    Nozawa, H., Royo Prieto, J.I.: Tenseness of Riemannian flows. Ann. Inst. Fourier (Grenoble) 64(4), 1419–1439 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Royo Prieto, J. I.: Estudio cohomológico de flujos riemannianos, Ph.D. Thesis, University of the Basque Country UPV/EHU. (2003). Accessed 15 Nov 2018
  21. 21.
    Royo Prieto, J .I., Saralegi-Aranguren, M., Wolak, R.: Top-dimensional group of the basic intersection cohomology for singular Riemannian foliations. Bull. Pol. Acad. Sci. Math. 53(4), 429–440 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Royo Prieto, J .I., Saralegi-Aranguren, M., Wolak, R.: Tautness for Riemannian foliations on non-compact manifolds. Manuscr. Math. 126(2), 177–200 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Royo Prieto, J .I., Saralegi-Aranguren, M., Wolak, R.: Cohomological tautness for Riemannian foliations. Russ. J. Math. Phys. 16(3), 450–466 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rummler, H.: Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts. Comment. Math. Helv. 54(2), 224–239 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stefan, P.: Accessible sets, orbits, and foliations with singularities. Proc. Lond. Math. Soc. s3-29(4), 699–713 (1974)Google Scholar
  26. 26.
    Sullivan, D.: A homological characterization of foliations consisting of minimal surfaces. Comment. Math. Helv. 54(2), 218–223 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sussmann, H.J.: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180, 171–188 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Thom, R.: Ensembles et morphismes stratifiés. Bull. Am. Math. Soc. 75, 240–284 (1969)CrossRefzbMATHGoogle Scholar
  29. 29.
    Verona, A.: Le théorème de de Rham pour les préstratifications abstraites. C. R. Acad. Sci. Paris Sér. A-B 273, A886–A889 (1971)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wolak, R.A.: Maximal subalgebras in the algebra of foliated vector fields of a Riemannian foliation. Comment. Math. Helv. 64(4), 536–541 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of the Basque Country UPV/EHUBilbaoSpain
  2. 2.Fèdèration CNRS, Nord-Pas-de-Calais FR 2956, UPRES-EA 2462 LML, Faculté Jean PerrinUniversité d’ArtoisLens CedexFrance
  3. 3.Instytut MatematykiUniwersytet JagiellonskiKrakówPoland

Personalised recommendations