An extension of the Taylor series expansion by using the Bell polynomials

  • Mohammad Masjed-Jamei
  • Zahra Moalemi
  • Wolfram Koepf
  • H. M. SrivastavaEmail author
Original Paper


By using the Bell polynomials, we introduce an extension of the Taylor series expansion and consider some of its special cases leading to new series and new identities. We also apply the extended expansion for deriving generating functions of such widely-investigated sequences of numbers as (for example) the Stirling numbers of the first and second kind.


Bell polynomials Taylor series expansion Interpolation formulas Generating functions Stirling numbers, Lagrange, Newton and Hermite interpolations Lagrange inversion theorem Polylogarithm function (or de Jonquière’s function)  function Biorthogonality relation 

Mathematics Subject Classification

Primary 65D05 Secondary 41A05 42A15 



The work of the first-named author was supported by the Alexander von Humboldt Foundation under Grant Number: Ref. 3.4-IRN-1128637-GF-E.


  1. 1.
    Abramowitz, M., Stegun, I. A. (eds.): Handbook of sMathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965; see also Table of Errata, Math. Comput. 21 (1964), 747–747Google Scholar
  2. 2.
    Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beyer, W.H.: Standard Mathematical Tables and Formulae, Twenty-eighth Edition. CRC Press, Boca Raton (1987)Google Scholar
  4. 4.
    Carathéodory, C.: Theory of Functions of a Complex Variable. Chelsea Publishing Company, New York (1954)zbMATHGoogle Scholar
  5. 5.
    Charalambides, C.A.: Enumerative Combinatorics. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2002)zbMATHGoogle Scholar
  6. 6.
    Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company, Dordrecht (1974)CrossRefzbMATHGoogle Scholar
  7. 7.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5, 329–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Craik, A.: Prehistory of Faá di Bruno’s formula. Am. Math. Mon. 112, 119–130 (2005)zbMATHGoogle Scholar
  9. 9.
    Cvijović, D.: New identities for the partial Bell polynomials. Appl. Math. Lett. 24, 1544–1547 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davis, P.J.: Interpolation and Approximation. Dover Publishing Company, New York (1975)zbMATHGoogle Scholar
  11. 11.
    Hazewinkel, M.: Encyclopedia of Mathematics: Supplement I. Kluwer Academic Publishers, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson, W.P.: The curious history of Faá di Bruno’s formula. Am. Math. Mon. 109, 217–234 (2002)zbMATHGoogle Scholar
  13. 13.
    Lewin, L.: Polylogarithms and Associated Functions. Elsevier, Amsterdam (1981)zbMATHGoogle Scholar
  14. 14.
    Lin, S.-D., Tu, S.-T., Srivastava, H.M.: Some generating functions involving the Stirling numbers of the second kind. Rend. Sem. Mat. Univ. Politec. Torino 59, 199–224 (2001)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Masjed-Jamei, M.: On constructing new expansions of functions using linear operators. J. Comput. Appl. Math. 234, 365–374 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Masjed-Jamei, M.: On constructing new interpolation formulas using linear operators and an operator type of quadrature rules. J. Comput. Appl. Math. 216, 307–318 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Masjed-Jamei, M., Jafari, M.A., Srivastava, H.M.: Some applications of the Stirling numbers of the first and second kind. J. Appl. Math. Comput. 2014, 1–22 (2014)zbMATHGoogle Scholar
  18. 18.
    Masjed-Jamei, M., Moalemi, Z., Area, I., Nieto, J.J.: A new type of Taylor series expansion. J. Inequal. Appl. 2018, Article ID 116, 1–10 (2018)Google Scholar
  19. 19.
    Mastroianni, G., Milovanović, G.V.: Interpolation Processes: Basic Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sloan, I.H.: Nonpolynomial interpolation. J. Approx. Theory 39, 97–117 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Srivastava, H.M.: Some families of generating functions associated with the Stirling numbers of the second kind. J. Math. Anal. Appl. 251, 752–769 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions, Halsted Press. Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1984)Google Scholar
  23. 23.
    Wang, W.-P., Wang, T.-M.: Identities on Bell polynomials and Sheffer sequences. Discret. Math. 309, 1637–1648 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  25. 25.
    Widder, D.V.: A generalization of Taylor’s series. Trans. Am. Math. Soc. 30, 126–154 (1927)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wilf, H.S.: Generatingfunctionology. Academic Press, New York (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Masjed-Jamei
    • 1
  • Zahra Moalemi
    • 1
  • Wolfram Koepf
    • 2
  • H. M. Srivastava
    • 3
    • 4
    Email author
  1. 1.Department of MathematicsK. N. Toosi University of TechnologyTehranIran
  2. 2.Department of MathematicsUniversity of KasselKasselGermany
  3. 3.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada
  4. 4.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungRepublic of China

Personalised recommendations