Canonical bases of modules over one dimensional \(\mathbf{K}\)-algebras

  • A. Abbas
  • A. AssiEmail author
  • P. A. García-Sánchez
Original Paper


Let \({\mathbf {K}}\) be a field and denote by \({\mathbf {K}}[t]\), the polynomial ring with coefficients in \({\mathbf {K}}\). Set \(\mathbf A={\mathbf {K}}[f_1,\ldots ,f_s]\), with \(f_1,\ldots , f_s \in \mathbf K[t]\). We give a procedure to calculate the monoid of degrees of the \({\mathbf {K}}\) algebra \({\mathbf {M}}=F_1{\mathbf {A}}+\cdots +F_r{\mathbf {A}}\) with \(F_1,\ldots , F_r\in {\mathbf {K}}[t]\). We show some applications to the problem of the classification of plane polynomial curves (that is, plane algebraic curves parametrized by polynomials) with respect to some of their invariants, using the module of Kähler differentials.


Numerical semigroups Canonical bases Polynomial curves Kähler differentials 

Mathematics Subject Classification

14H20 14H50 05E15 


  1. 1.
    Abhyankar, S.S.: On the semigroup of a meromorphic plane curve, Part I. In: Nagata, M. (ed.) Proceedings of the International Symposium on Algebraic Geometry, Kyoto, 1977. Kinokuniya Book-Store Company, pp. 240–414 (1978)Google Scholar
  2. 2.
    Assi, A., Sathaye, A.: On Quasi-Homogeneous Curves, Affine Algebraic Geometry, pp. 33–56. Osaka Univ. Press, Osaka (2007)zbMATHGoogle Scholar
  3. 3.
    Assi, A., García-Sánchez, P.A.: Algorithms for curves with one place at infinity. J. Symb. Comp. 74, 475–492 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Assi, A., García-Sánchez, P.A.: Numerical Semigroups and Applications., RSME Springer Series I, New York (2016)Google Scholar
  5. 5.
    Assi, A., García-Sánchez, P.A., Micale, V.: Bases of subalgebras of K[[x]] and K[x]. J. Symb. Comp. 79, 4–22 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bayer, V., Hefez, A.: Algebroid curves whose Milnor and Tjurina differ by one or two. Bol. Soc. Bras. Mat 32(n\(^{o}\) 1), 63–81 (2001)Google Scholar
  7. 7.
    Berger, R.: Differentialmoduln eindimensionaler lokaler Ringe. Math. Z. 81, 326–354 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Delgado, M., García-Sánchez, P.A., Morais, J.: “NumericalSgps”, A GAP package for numerical semigroups. Accessed 19 Aug 2017
  9. 9.
    The GAP Group: GAP—groups, algorithms, and programming, version 4.7.5 (2014). Accessed 19 Aug 2017
  10. 10.
    Hefez, A., Hernandes, M.: Standard bases for local rings of branches and their modules of differentials. J. Symb. Comp. 42, 178–191 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 2. Springer, New York (2005)Google Scholar
  12. 12.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics. Springer, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Robbiano, L., Sweedler, M.: Subalgebra bases, pp. 61–87 in Commutative Algebra (Salvador, 1988). In: Bruns, W., Simis, A. (eds.) Lecture Notes in Math, vol. 1430. Springer, Berlin (1990)Google Scholar
  14. 14.
    Zariski, O.: Characterization of plane algebroid curves whose module of differentials has maximum torsion. Proc. Nat. Acad. Sci. USA 56(3), 781–786 (1966)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.MathématiquesUniversité d’AngersAngers ceded 01France
  2. 2.Departamento de Álgebra and IEMath-GRUniversidad de GranadaGranadaSpain

Personalised recommendations