Advertisement

Factorable strongly p-nuclear m-homogeneous polynomials

  • D. Achour
  • A. Alouani
  • P. Rueda
  • K. Saadi
Original Paper
  • 20 Downloads

Abstract

We characterize in terms of summabiility those homogeneous polynomials whose linearization is p-nuclear. This characterization provides a strong link between the theory of p-nuclear linear operators and the (non linear) homogeneous p-nuclear polynomials that significantly improves former approaches. The deep connection with Grothendieck-integral polynomials is also analyzed.

Keywords

Summing operator Multilinear operator Integral polynomial Nuclear operator 

Mathematics Subject Classification

Primary 46G25 Secondary 47B10 

Notes

Acknowledgements

P. Rueda is supported by Ministerio de Economía y Competitividad and FEDER Under Project MTM2016-77054-C2-1-P.

References

  1. 1.
    Achour, D., Alouani, A.: On the multilinear generalizations of the concept of nuclear operators. Colloq. Math. 120, 85–102 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Achour, D., Alouani, A., Rueda, P., Sánchez-Pérez, E.A.: Tensor representations of summing polynomials. (Submitted)Google Scholar
  3. 3.
    Achour, D., Mezrag, L.: On the Cohen strongly \(p\)-summing multilinear operators. J. Math. Anal. Appl. 327, 550–563 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Achour, D., Saadi, K.: A polynomial characterization of Hilbert spaces. Collect. Math. 61(3), 291–301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alencar, R.: On reflexivity and basis for \({\cal{P}} (^{m}X)\). Proc. R. Irish Acad. Sect. A 85, 131–138 (1985)zbMATHGoogle Scholar
  6. 6.
    Botelho, G., Pellegrino, D., Rueda, P.: On composition ideals of multilinear mapping and homogeneous polynomials. Publ. RIMS Kyoto Univ. 43, 1139–1155 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Çalişkan, E., Pellegrino, D.M.: On the multilinear generalizations of the concept of absolutely summing operators. Rock. Mount. J. Math. 37(4), 1137–1154 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carando, D., Lassalle, S.: Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 307, 77–85 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cilia, R., D’Anna, M., Gutiérrez, J.M.: Polynomial characterization of \(\cal{L}_{\infty }\)-spaces. J. Math. Anal. Appl. 275, 900–912 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cilia, R., Gutiérrez, J.M.: Ideals of integral and r-factorable polynomials. Bol. Soc. Mat. Mexicana 14, 95–124 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cohen, J.S.: Absolutely \(p\)-summing, p-nuclear operators and their conjugates. Math. Ann. 201, 177–201 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North Holland, Amsterdam (1993)zbMATHGoogle Scholar
  13. 13.
    Dimant, V.: Strongly \(p\)-summing multilinear operators. J. Math. Anal. Appl. 278, 182–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Grothendieck, A.: Résume de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paolo 8, 1–79 (1956)Google Scholar
  17. 17.
    Lindenstrauss, J., Rosenthal, H.P.: The \(\cal{L}_{p}\) space. Israel J. Math. 7, 325–349 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mastylo, M., Rueda, P., Sánchez-Pérez, E.A.: Factorization of \((p, q)\)-summing polynomials through Lorentz spaces. J. Math. Anal. Appl. 449(1), 195–206 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mujica, J.: Complex Analysis in Banach Spaces. Dover Publications Inc., New York (2010)Google Scholar
  20. 20.
    Pellegrino, D., Rueda, P., Sánchez-Pérez, E.A.: Surveying the spirit of absolute summability on multilinear operators and homogeneous polynomials, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales Serie A. Matematicas 110, 285–302 (2016)zbMATHGoogle Scholar
  21. 21.
    Pérez-García, D.: Comparing different classes of absolutely summing multilinear operators. Arch. Math. (Basel) 85(3), 258–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  23. 23.
    Pietsch, A.: Ideals of multilinear functional. In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzig, pp. 185–199 (1983)Google Scholar
  24. 24.
    Popa, D.: A note the concept of factorable strongly \(p\)-summing operators, Revista de la Real Academia de ciencias Exactas. Físicas y Naturales Serie A. Matemáticas 111, 465–471 (2016)Google Scholar
  25. 25.
    Rueda, P., Sánchez-Pérez, E.A.: Factorization of \(p\)-dominated polynomials through \(L^{p}\)-spaces. Michigan Math. J. 635(2), 345–353 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ryan, A.: Applications of topological tensor products to infinite dimensional holomorphy. Ph.D. Thesis, Trinity College, Dublin (1980)Google Scholar
  27. 27.
    Villanueva, I.: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279, 56–70 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Fonctionnelle et Géométrie des EspacesUniversity of M’silaM’silaAlgeria
  2. 2.Departamento de Análisis MatemáticoUniversitat de ValènciaBurjassot - ValenciaSpain

Personalised recommendations