Factorable strongly p-nuclear m-homogeneous polynomials

  • D. Achour
  • A. Alouani
  • P. Rueda
  • K. Saadi
Original Paper


We characterize in terms of summabiility those homogeneous polynomials whose linearization is p-nuclear. This characterization provides a strong link between the theory of p-nuclear linear operators and the (non linear) homogeneous p-nuclear polynomials that significantly improves former approaches. The deep connection with Grothendieck-integral polynomials is also analyzed.


Summing operator Multilinear operator Integral polynomial Nuclear operator 

Mathematics Subject Classification

Primary 46G25 Secondary 47B10 



P. Rueda is supported by Ministerio de Economía y Competitividad and FEDER Under Project MTM2016-77054-C2-1-P.


  1. 1.
    Achour, D., Alouani, A.: On the multilinear generalizations of the concept of nuclear operators. Colloq. Math. 120, 85–102 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Achour, D., Alouani, A., Rueda, P., Sánchez-Pérez, E.A.: Tensor representations of summing polynomials. (Submitted)Google Scholar
  3. 3.
    Achour, D., Mezrag, L.: On the Cohen strongly \(p\)-summing multilinear operators. J. Math. Anal. Appl. 327, 550–563 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Achour, D., Saadi, K.: A polynomial characterization of Hilbert spaces. Collect. Math. 61(3), 291–301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alencar, R.: On reflexivity and basis for \({\cal{P}} (^{m}X)\). Proc. R. Irish Acad. Sect. A 85, 131–138 (1985)zbMATHGoogle Scholar
  6. 6.
    Botelho, G., Pellegrino, D., Rueda, P.: On composition ideals of multilinear mapping and homogeneous polynomials. Publ. RIMS Kyoto Univ. 43, 1139–1155 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Çalişkan, E., Pellegrino, D.M.: On the multilinear generalizations of the concept of absolutely summing operators. Rock. Mount. J. Math. 37(4), 1137–1154 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carando, D., Lassalle, S.: Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 307, 77–85 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cilia, R., D’Anna, M., Gutiérrez, J.M.: Polynomial characterization of \(\cal{L}_{\infty }\)-spaces. J. Math. Anal. Appl. 275, 900–912 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cilia, R., Gutiérrez, J.M.: Ideals of integral and r-factorable polynomials. Bol. Soc. Mat. Mexicana 14, 95–124 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cohen, J.S.: Absolutely \(p\)-summing, p-nuclear operators and their conjugates. Math. Ann. 201, 177–201 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North Holland, Amsterdam (1993)zbMATHGoogle Scholar
  13. 13.
    Dimant, V.: Strongly \(p\)-summing multilinear operators. J. Math. Anal. Appl. 278, 182–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Grothendieck, A.: Résume de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paolo 8, 1–79 (1956)Google Scholar
  17. 17.
    Lindenstrauss, J., Rosenthal, H.P.: The \(\cal{L}_{p}\) space. Israel J. Math. 7, 325–349 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mastylo, M., Rueda, P., Sánchez-Pérez, E.A.: Factorization of \((p, q)\)-summing polynomials through Lorentz spaces. J. Math. Anal. Appl. 449(1), 195–206 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mujica, J.: Complex Analysis in Banach Spaces. Dover Publications Inc., New York (2010)Google Scholar
  20. 20.
    Pellegrino, D., Rueda, P., Sánchez-Pérez, E.A.: Surveying the spirit of absolute summability on multilinear operators and homogeneous polynomials, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales Serie A. Matematicas 110, 285–302 (2016)zbMATHGoogle Scholar
  21. 21.
    Pérez-García, D.: Comparing different classes of absolutely summing multilinear operators. Arch. Math. (Basel) 85(3), 258–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  23. 23.
    Pietsch, A.: Ideals of multilinear functional. In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzig, pp. 185–199 (1983)Google Scholar
  24. 24.
    Popa, D.: A note the concept of factorable strongly \(p\)-summing operators, Revista de la Real Academia de ciencias Exactas. Físicas y Naturales Serie A. Matemáticas 111, 465–471 (2016)Google Scholar
  25. 25.
    Rueda, P., Sánchez-Pérez, E.A.: Factorization of \(p\)-dominated polynomials through \(L^{p}\)-spaces. Michigan Math. J. 635(2), 345–353 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ryan, A.: Applications of topological tensor products to infinite dimensional holomorphy. Ph.D. Thesis, Trinity College, Dublin (1980)Google Scholar
  27. 27.
    Villanueva, I.: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279, 56–70 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Fonctionnelle et Géométrie des EspacesUniversity of M’silaM’silaAlgeria
  2. 2.Departamento de Análisis MatemáticoUniversitat de ValènciaBurjassot - ValenciaSpain

Personalised recommendations