A fixed point method for solving a split feasibility problem in Hilbert spaces

  • Xiaolong QinEmail author
  • Lin Wang
Original Paper


In this paper, a fixed method is introduced and investigated for solving a split feasibility problem. A strong convergence theorem of solutions is established in the framework of infinite dimensional Hilbert spaces. As an application, a split equality problem is also investigated.


Hilbert space Monotone mapping Nonexpansive mapping Split feasibility problem Weak convergence 

Mathematics Subject Classification

47H05 47H09 47N10 



This work was supported by the National Natural Science Foundation of China under Grant No.11401152.


  1. 1.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algor. 8, 221–239 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)CrossRefGoogle Scholar
  4. 4.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tang, J., Chang, S.S., Dong, J.: Split equality fixed point problems for two quasi-asymptotically pseudocontractive mappings. J. Nonlinear Funct. Anal. 2017, Article ID 26 (2017)Google Scholar
  7. 7.
    Xu, H.K.: A variable Krasonsel’skiǐ–Mann algorithm and multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, Article ID 105018 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cho, S.Y.: Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal. Comput. 8, 19–31 (2018)Google Scholar
  10. 10.
    Chang, S.S., Wang, L., Zhao, Y.: On a class of split equality fixed point problems in Hilbert spaces. J. Nonlinear Var. Anal. 1, 201–212 (2017)zbMATHGoogle Scholar
  11. 11.
    Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15, 809–818 (2014)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gibali, A., Liu, L.-W., Tang, Y.-C.: Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett.
  13. 13.
    Cho, S.Y.: Generalized mixed equilibrium and fixed point problems in a Banach space. J. Nonlinear Sci. Appl. 9, 1083–1092 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Thianwan, S.: Strong convergence theorems by hybrid methods for a finite family of nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 3, 605–614 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schu, J.: Weak, strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Austral. Math. Soc. 43, 153–159 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–409 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Suzuki, T.: A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 135, 99–106 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cho, S.Y., Li, W., Kang, S.M.: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013, Article ID 199 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Qin, X.: Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory Appl. 2013, Article ID 148 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Qin, X., Yao, J.C.: Projection splitting algorithms for nonself operators. J. Nonlinear Convex Anal. 18, 925–935 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Opial, Z.: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Am. Math. Soc. 73, 595–597 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 103–123 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moudafi, A., Al-Shemas, E.: Simultaneouss iterative methods for split equality problem. Trans. Math. Program. Appl. 1, 1–11 (2013)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.College of Statistics and MathematicsYunnan University of Finance and EconomicsKunmingChina

Personalised recommendations