Advertisement

On interpolation functions for the number of k-ary Lyndon words associated with the Apostol–Euler numbers and their applications

  • Irem KucukogluEmail author
  • Yilmaz Simsek
Original Paper
  • 64 Downloads

Abstract

The aim of this paper is to construct interpolation functions for the numbers of the k-ary Lyndon words which count n digit primitive necklace class representative on the set of the k-letter alphabet. By using the unified zeta-type function and the unification of the Apostol-type numbers which are defined by Ozden et al. (Comput Math Appl 60:2779–2787, 2010), we give an alternating series for the numbers of the k-ary Lyndon words, \(L_{k}\left( n\right) \) in terms of the Apostol–Euler numbers and Frobenius–Euler numbers. We investigate various properties of these functions. Furthermore, applying higher order derivative operator to the interpolation functions for the Lyndon words, we derive ODEs including Stirling-type numbers, the Apostol–Euler numbers, the unified zeta-type functions and also combinatorial sums. By using recurrence relation of the Apostol–Euler numbers, we give computation algorithms for computing not only the Apostol–Euler numbers but also the interpolation functions of the numbers \(L_{k}\left( n\right) \). We also give some remarks, observations and computations for sums of infinite series including these interpolation functions.

Keywords

Lyndon words Generating functions Special numbers Special polynomials Differential operator Algorithm Stirling numbers of the first kind Apostol–Euler numbers and polynomials Frobenius–Euler numbers and polynomials Arithmetical functions 

Mathematics Subject Classification

03D40 05A05 05A15 11A25 11B68 11B83 11M35 11S40 47E05 68R15 

Notes

Acknowledgements

The present paper was supported by Scientific Research Project Administration of Akdeniz University (with Project Number: FDK-2017-2375).

References

  1. 1.
    Apostol, T.M.: On the Lerch zeta function. Pac. J. Math. 1, 161–167 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Apostol, T.M.: Introduction to Analytic Number Theory. Narosa Publishing, Springer Verlag, New Delhi, Chennai, Mumbai (1998)zbMATHGoogle Scholar
  3. 3.
    Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28, 996–1022 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bona, M.: Introduction to Enumerative Combinatorics. The McGraw-Hill Companies, Inc., New York (2007)zbMATHGoogle Scholar
  5. 5.
    Cakic, N.P., Milovanovic, G.V.: On generalized Stirling numbers and polynomials. Math. Balk. 18, 241–248 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cusick, T.W., Stanica, P.: Cryptographic Boolean Functions and Applications. Academic Press, London (2009)zbMATHGoogle Scholar
  7. 7.
    Djordjevic, G.B., Milovanovic, G.V.: Special Classes of Polynomials. University of Nis, Faculty of Technology, Leskovac (2014)Google Scholar
  8. 8.
    Hu, S., Kim, M.-S.: Two closed forms for the Apostol–Bernoulli polynomials. arXiv:1509.04190
  9. 9.
    Kim, T., Jang, L., Ryoo, C.S.: Note on q-extensions of Euler numbers and polynomials of higher order. J. Inequal. Appl. 2007, 1–9 (2008) (Article ID: 371295)Google Scholar
  10. 10.
    Kim, D.S., Kim, T.: On degenerate bell numbers and polynomials. RACSAM Rev. R. Acad. A. 111, 435–446 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kim, T., Rim, S.-H., Simsek, Y., Kim, D.: On the analogs of Bernoulli and Euler numbers, related identities and zeta and \(l\)-functions. J. Korean Math. Soc. 45(2), 435–453 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kucukoglu, I., Simsek, Y.: On \(k\)-ary Lyndon words and their generating functions. In: Proceedings of the 14th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM2016), AIP Conf. Proc. 1863(300004), pp. 1–4 (2017)Google Scholar
  13. 13.
    Kucukoglu, I., Bayad, A., Simsek, Y.: \(k\)-ary Lyndon words and necklaces arising as rational arguments of Hurwitz–Lerch zeta function and Apostol–Bernoulli polynomials. Mediterr. J. Math. 14(6), 1–16 (2017)  https://doi.org/10.1007/s00009-017-1025-4 (Article: 223)
  14. 14.
    Kucukoglu, I., Simsek, Y.: Identities on the \(k\)-ary Lyndon words related to a family of zeta functions. arXiv:1606.03837v1
  15. 15.
    Kucukoglu, I., Milovanović, G.V., Simsek, Y.: Analysis of generating functions for special words and numbers with algorithms for their computation (preprint)Google Scholar
  16. 16.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Luo, Q.-M.: Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwanese J. Math. 10, 917–925 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. J. Math. Anal. Appl. 308, 290–302 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Luo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials. Comput. Math. Appl. 51, 631–642 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol–Genocchi polynomials and the stirling numbers of the second kind. Appl. Math. Comput. 217, 5702–5728 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lyndon, R.: On burnside problem I. Trans. Am. Math. Soc. 77, 202–215 (1954)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Metropolis, N., Rota, G.-C.: Witt vectors and the algebra of necklaces. Adv. Math. 50, 95–125 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ozden, H., Cangul, I.N., Simsek, Y.: Multivariate interpolation functions of higher-order \(q\)-Euler numbers and their applications. Abstr. Appl. Anal. 2008, 1–17 (2008) (Article ID: 390857)Google Scholar
  24. 24.
    Ozden, H., Simsek, Y., Srivastava, H.M.: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60, 2779–2787 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Petrogradsky, V.M.: Witt’s formula for restricted Lie algebras. Adv. Appl. Math. 30, 219–227 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ruskey, F., Sawada, J.: An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput. 29(2), 671–684 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Srivastava, H.M.: Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 5, 390–444 (2011)MathSciNetGoogle Scholar
  28. 28.
    Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Engineering and Architecture, Department of Software EngineeringAntalya Akev UniversityAntalyaTurkey
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of AkdenizAntalyaTurkey

Personalised recommendations