Advertisement

Weak \(w^{2}\)-stability and data dependence of Mann iteration method in Hilbert spaces

  • Faik GürsoyEmail author
  • Abdul Rahim Khan
  • Müzeyyen Ertürk
  • Vatan Karakaya
Original Paper
  • 145 Downloads

Abstract

We study a weaker and more natural notion of stability called weak \(w^{2}\)-stability to get an insight in the corresponding results obtained by Măruşter and Măruşter (J Comput Appl Math 276:110–116, 2015) and Wang (J Comput Appl Math 285:226–229, 2015). A data dependence result for fixed points of strongly demicontractive operators is also established. Some illustrative examples are given to validate results obtained herein.

Keywords

Mann iteration Strongly demicontractive operator Data dependency Stability 

Mathematics Subject Classification

47H09 47H10 54H25 65J15 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments to improve quality and presentation of the paper.

References

  1. 1.
    Abbas, M., Ali, B., Butt, A.R.: Existence and data dependence of the fixed points of generalized contraction mappings with applications. Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Math. RACSAM 109, 603–621 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alfuraidan, M.R., Khamsi, M.A.: Fibonacci–Mann iteration for monotone asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. (2017). doi: 10.1017/S0004972717000120
  3. 3.
    Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)zbMATHGoogle Scholar
  4. 4.
    Berinde, V.: On the stability of some fixed point procedures. Bul. Ştiinţ. Univ. Baia Mare Ser. B, Matematică-Informatică 18, 7–14 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Berinde, V.: Summable almost stability of fixed point iteration procedures. Carpathian J. Math. 19, 81–88 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cardinali, T., Rubbioni, P.: A generalization of the Caristi fixed point theorem in metric spaces. Fixed Point Theory 11, 3–10 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dehaish, B.I., Khamsi, M.A., Khan, A.R.: Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces. J. Math. Anal. Appl. 397, 861–868 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Espínola, R., Petruşel, A.: Existence and data dependence of fixed points for multivalued operators on gauge spaces. J. Math. Anal. Appl. 309, 420–432 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gürsoy, F., Karakaya, V., Rhoades, B.E.: Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory Appl. 2013(1), 1–12 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harder, A.M., Hicks, T.L.: Stability results for fixed point iteration procedures. Math. Jpn. 33, 693–706 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ivan, D., Leuştean, L.: A rate of asymptotic regularity for the Mann iteration of \(\kappa -\)strict pseudo-contractions. Numer. Funct. Anal. Optim. 36, 792–798 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karakaya, V., Gürsoy, F., Ertürk, M.: Some convergence and data dependence results for various fixed point iterative methods. Kuwait J. Sci. 43, 112–128 (2016)MathSciNetGoogle Scholar
  14. 14.
    Khan, A.R., Gürsoy, F., Karakaya, V.: Jungck–Khan iterative scheme and higher convergence rate. Int. J. Comput. Math. 93, 2092–2105 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khan, A.R., Gürsoy, F., Kumar, V.: Stability and data dependence results for Jungck–Khan iterative scheme. Turkish J. Math. 40, 631–640 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Khan, A.R., Kumar, V., Hussain, N.: Analytical and numerical treatment of Jungck-type iterative schemes. Appl. Math. Comput. 231, 521–535 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Liu, Z., Kang, S.M., Shim, S.H.: Almost stability of the Mann iteration method with errors for strictly hemi-contractive operators in smooth Banach spaces. J. Korean Math. Soc. 40, 29–40 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mann, W.R.: Mean value methods in iterations. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Măruşter, L., Măruşter, Ş.: On the error estimation and T-stability of the Mann iteration. J. Comput. Appl. Math. 276, 110–116 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Măruşter, L., Măruşter, Ş.: Strong convergence of the Mann iteration for \(\alpha -\)demicontractive mappings. Math. Comput. Model. 54, 2486–2492 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Măruşter, Ş., Rus, I.A.: Kannan contractions and strongly demicontractive mappings. Creat. Math. Inform. 24, 173–182 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ostrowski, A.M.: The round-off stability of iterations. ZAMM Z. Angew. Math. Mech. 47, 77–81 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rus, I.A., Petruşel, A., Sîntamarian, A.: Data dependence of the fixed point set of some multivalued weakly Picard operators. Nonlinear Anal. 52, 1947–1959 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Soltuz, S.M., Grosan, T.: Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl. 2008, 1–7 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Timis, I.: On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems. Int. J. Comput. Appl. 37, 9–13 (2012)MathSciNetGoogle Scholar
  26. 26.
    Urabe, M.: Convergence of numerical iteration in solution of equations. J. Sci. Hiroshima Univ. A 19, 479–489 (1956)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wang, C.: A note on the error estimation of the Mann iteration. J. Comput. Appl. Math. 285, 226–229 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, C., Zhang, C.Z.: Approximating common fixed points for a pair of generalized nonlinear mappings in convex metric space. J. Nonlinear Sci. Appl. 9, 1–7 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  • Faik Gürsoy
    • 1
    Email author
  • Abdul Rahim Khan
    • 2
  • Müzeyyen Ertürk
    • 1
  • Vatan Karakaya
    • 3
  1. 1.Department of MathematicsAdiyaman UniversityAdiyamanTurkey
  2. 2.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of Mathematical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations