Splitting and parameter dependence in the category of \(\hbox {PLH}\) spaces
Original Paper
First Online:
- 48 Downloads
Abstract
We extend the splitting theory for \(\hbox {PLS}\) spaces and the corresponding parameter dependence problem to the context of hilbertizable spaces. In particular, we characterize for fixed \(\hbox {PLH}\) spaces E and X, i.e. strongly reduced projective limits of inductive limits of Hilbert spaces, the splitting of each short exact sequence of \(\hbox {PLH}\) spaces, i.e. g has a continuous linear right inverse or f has a continuous linear left inverse, if E is either a Fréchet–Hilbert space or the strong dual of a Fréchet–Hilbert space by Bonet and Domański’s conditions (T) and \((T_{\varepsilon })\). Thus we extend the splitting relation for Fréchet–Hilbert spaces due to Domański and Mastyło and the \((DN)-(\Omega )\) splitting theorem of Vogt and Wagner. Due to the lack of nuclearity significantly different methods have to be applied. Through the connection to the vanishing of \(\hbox {proj}^{1}\) of a spectrum of spaces of operators the above methods are also linked to the parameter dependence problem, albeit under some nuclearity assumptions as we need interpolation. These theoretical results are applied to several non-\(\hbox {PLS}\) (non-nuclear) spaces, as the space \(\mathscr {D}_{{\text {L}}_2}\), its strong dual, Hörmander’s \(\hbox {B}_{2,k}^{\mathrm{loc}}(\Omega )\) spaces and the Köthe \(\hbox {PLH}\) spaces.
$$\begin{aligned} 0 \rightarrow X \xrightarrow {f} G \xrightarrow {g} E \rightarrow 0 \end{aligned}$$
Keywords
Splitting of short exact sequences Parameter dependence Functor \(\hbox {Ext}^{1}\) Hilbertizable locally convex spaces Fréchet–Hilbert spaceMathematics Subject Classification
Primary 46M18 46F05 35E20 35R20 Secondary 46A63 46A13Notes
Acknowledgements
The authors thank L. Frerick and J. Wengenroth for many fruitful discussions on the subjects of this article during the supervision of the PhD theses. Furthermore the financial support of the “Stipendienstiftung Rheinland-Pfalz” for both PhD projects is acknowledged.
References
- 1.Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Functional Analysis and Its Applications (Nice, 1986). ICPAM Lecture Notes, pp. 35–133. World Scientific Publishing, Singapore (1988)Google Scholar
- 2.Bonet, J., Domański, P.: Real analytic curves in Fréchet spaces and their duals. Monatsh. Math. 126(1), 13–36 (1998)MathSciNetzbMATHGoogle Scholar
- 3.Bonet, J., Domański, P.: Parameter dependence of solutions of partial differential equations in spaces of real analytic functions. Proc. Am. Math. Soc. 129(2), 495–503 (2001) (electronic) Google Scholar
- 4.Bonet, J., Domański, P.: Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230(2), 329–381 (2006)MathSciNetzbMATHGoogle Scholar
- 5.Bonet, J., Domański, P.: The structure of spaces of quasianalytic functions of Roumieu type. Arch. Math. (Basel) 89(5), 430–441 (2007)MathSciNetzbMATHGoogle Scholar
- 6.Bonet, J., Domański, P.: The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations. Adv. Math. 217(2), 561–585 (2008)MathSciNetzbMATHGoogle Scholar
- 7.Bonet, J., Domański, P., Vogt, D.: Interpolation of vector-valued real analytic functions. J. Lond. Math. Soc. 66(2), 407–420 (2002)MathSciNetzbMATHGoogle Scholar
- 8.Browder, F.E.: Analyticity and partial differential equations. I. Am. J. Math. 84, 666–710 (1962)MathSciNetzbMATHGoogle Scholar
- 9.Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010)MathSciNetzbMATHGoogle Scholar
- 10.Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, vol. 176. North-Holland Publishing Co., Amsterdam (1993)zbMATHGoogle Scholar
- 11.Dierolf, B.: Splitting theory for PLH-spaces. Ph.D. thesis, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2014/869/pdf/DissertationBernhardDierolf.pdf (2014)
- 12.Dierolf, B.: The Hilbert tensor product and inductive limits. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM (2015). doi: 10.1007/s13398-015-0229-3
- 13.Dierolf, B., Sieg, D.: A homological approach to the splitting theory for PLS\(_w\)-spaces. J. Math. Anal. Appl. 433(2), 1305–1328 (2016)MathSciNetzbMATHGoogle Scholar
- 14.Domański, P.: Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives. In: Orlicz Centenary Volume, Banach Center Publ., vol. 64, pp. 51–70. Polish Academy of Sciences, Warsaw (2004)Google Scholar
- 15.Domański, P.: Real analytic parameter dependence of solutions of differential equations. Rev. Mat. Iberoam. 26(1), 175–238 (2010)MathSciNetzbMATHGoogle Scholar
- 16.Domański, P.: Real analytic parameter dependence of solutions of differential equations over Roumieu classes. Funct. Approx. Comment. Math. 44(part 1), 79–109 (2011)MathSciNetzbMATHGoogle Scholar
- 17.Domański, P., Frerick, L., Vogt, D.: Fréchet quotients of spaces of real-analytic functions. Studia Math. 159(2), 229–245 (2003)MathSciNetzbMATHGoogle Scholar
- 18.Domański, P., Mastyło, M.: Characterization of splitting for Fréchet–Hilbert spaces via interpolation. Math. Ann. 339(2), 317–340 (2007)MathSciNetzbMATHGoogle Scholar
- 19.Domański, P., Vogt, D.: Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522, 63–79 (2000)MathSciNetzbMATHGoogle Scholar
- 20.Domański, P., Vogt, D.: The space of real-analytic functions has no basis. Studia Math. 142(2), 187–200 (2000)MathSciNetzbMATHGoogle Scholar
- 21.Domański, P., Vogt, D.: A splitting theory for the space of distributions. Studia Math. 140(1), 57–77 (2000)MathSciNetzbMATHGoogle Scholar
- 22.Frerick, L.: On vector valued sequence spaces. Ph.D. thesis, University of Trier (1994)Google Scholar
- 23.Frerick, L., Kalmes, T.: Some results on surjectivity of augmented semi-elliptic differential operators. Math. Ann. 347(1), 81–94 (2010)MathSciNetzbMATHGoogle Scholar
- 24.Frerick, L., Kunkle, D., Wengenroth, J.: The projective limit functor for spectra of webbed spaces. Studia Math. 158(2), 117–129 (2003)MathSciNetzbMATHGoogle Scholar
- 25.Frerick, L., Wengenroth, J.: A sufficient condition for vanishing of the derived projective limit functor. Arch. Math. (Basel) 67(4), 296–301 (1996)MathSciNetzbMATHGoogle Scholar
- 26.Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, vol. 16, p. 140. Memoirs of the American Mathematical Society, Providence, Rhode Island (1955)Google Scholar
- 27.Hermanns, V.: Zur Existenz von Rechtsinversen linearer partieller Differentialoperatoren mit konstanten Koeffizienten auf \({B}_{p,\kappa }^{loc}({\Omega })\)-Räumen. Ph.D. thesis, Bergische Universität Wuppertal. http://d-nb.info/975806661/34 (2005)
- 28.Hörmander, L.: The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Classics in Mathematics. Springer, Berlin (2005) (Reprint of the 1983 original)Google Scholar
- 29.Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer, Berlin (2003)Google Scholar
- 30.Jarchow, H.: Locally Convex Spaces. Mathematische Leitfäden [Mathematical Textbooks]. B. G. Teubner, Stuttgart (1981)zbMATHGoogle Scholar
- 31.Kalmes, T.: The augmented operator of a surjective partial differential operator with constant coefficients need not be surjective. Bull. Lond. Math. Soc. 44(3), 610–614 (2012)MathSciNetzbMATHGoogle Scholar
- 32.Köthe, G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 237. Springer, New York (1979)zbMATHGoogle Scholar
- 33.Kunkle, D.: Splitting of power series spaces of (PLS)-type. Ph.D. thesis, Bergische Universität Wuppertal. http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-333/d070106.pdf (2001)
- 34.Langenbruch, M.: Characterization of surjective partial differential operators on spaces of real analytic functions. Studia Math. 162(1), 53–96 (2004)MathSciNetzbMATHGoogle Scholar
- 35.Mantlik, F.: Linear equations depending differentiably on a parameter. Integral Equ. Oper. Theory 13(2), 231–250 (1990)MathSciNetzbMATHGoogle Scholar
- 36.Mantlik, F.: Partial differential operators depending analytically on a parameter. Ann. Inst. Fourier (Grenoble) 41(3), 577–599 (1991)MathSciNetzbMATHGoogle Scholar
- 37.Mantlik, F.: Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter. Trans. Am. Math. Soc. 334(1), 245–257 (1992)MathSciNetzbMATHGoogle Scholar
- 38.Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (Translated from the German by M. S. Ramanujan and revised by the authors) (1997)Google Scholar
- 39.Mitchell, B.: Theory of Categories. Pure and Applied Mathematics, vol. XVII. Academic, New York (1965)zbMATHGoogle Scholar
- 40.Murphy, G.J.: \(C^*\)-Algebras and Operator Theory. Academic, Boston (1990)zbMATHGoogle Scholar
- 41.Palamodov, V.P.: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1), 3–66 (in Russian) (English transl., Russian Math. Surveys 26(1), 1–64 (1971)) (1971)Google Scholar
- 42.Palamodov, V.P.: The projective limit functor in the category of topological linear spaces. Mat. Sb. 75, 567–603 (in Russian) (English transl., Math. USSR. Sbornik 17, 189–315 (1972)) (1968)Google Scholar
- 43.Pietsch, A.: Nuclear Locally Convex Spaces. Springer, New York (Translated from the second German edition by William H. Ruckle, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66) (1972)Google Scholar
- 44.Piszczek, K.: On a property of PLS-spaces inherited by their tensor products. Bull. Belg. Math. Soc. Simon Stevin 17(1), 155–170 (2010)MathSciNetzbMATHGoogle Scholar
- 45.Retakh, V.S.: The subspaces of a countable inductive limit. Dokl. Akad. Nauk SSSR 194, 1277–1279 (1970)MathSciNetzbMATHGoogle Scholar
- 46.Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Ann. Inst. Fourier Grenoble 7, 1–141 (1957)MathSciNetzbMATHGoogle Scholar
- 47.Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Ann. Inst. Fourier Grenoble 8, 1–209 (1958)MathSciNetzbMATHGoogle Scholar
- 48.Sieg, D.: A homological approach to the splitting theory of PLS-spaces. Ph.D. thesis, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2010/572/pdf/SiegDiss.pdf (2010)
- 49.Trèves, F.: Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters. Am. J. Math. 84, 561–577 (1962)MathSciNetzbMATHGoogle Scholar
- 50.Trèves, F.: Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres. Bull. Soc. Math. Fr. 90, 473–486 (1962)zbMATHGoogle Scholar
- 51.Valdivia, M.: Representations of the spaces \({\fancyscript {D}}(\Omega )\) and \({\fancyscript {D}}^{\prime } (\Omega )\). Rev. Real Acad. Cienc. Exact. Fís. Natur. Madr. 72(3), 385–414 (1978)Google Scholar
- 52.Varol, O.: Kriterien für Tor\(^1_{\alpha }\)(E,F)= 0 für (DF)- und Frécheträume. Ph.D. thesis, Bergische Universtät Wuppertal. http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fb07/diss2002/varol/d070205.pdf (2002)
- 53.Varol, O.: On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Math. 180(1), 41–71 (2007)MathSciNetzbMATHGoogle Scholar
- 54.Vogt, D.: Vektorwertige Distributionen als Randverteilungen holomorpher Funktionen. Manuscr. Math. 17(3), 267–290 (1975)MathSciNetzbMATHGoogle Scholar
- 55.Vogt, D.: On the solvability of \({P}({D})f = g\) for vector valued functions. RIMS Kokyoroku 508, 168–182 (1983)Google Scholar
- 56.Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Functional Analysis, Holomorphy, and Approximation Theory (Rio de Janeiro, 1979). Lecture Notes in Pure and Applied Mathematics, vol. 83, pp. 405–443. Dekker, New York (1983)Google Scholar
- 57.Vogt, D.: On the functors \({\text{ Ext }}^{1}(E, F)\) for Fréchet spaces. Studia Math. 85(2), 163–197 (1987)MathSciNetGoogle Scholar
- 58.Vogt, D.: Topics on projective spectra of (LB)-spaces. In: Advances in the Theory of Fréchet Spaces (Istanbul, 1988). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 287, pp. 11–27. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
- 59.Vogt, D.: Regularity properties of (LF)-spaces. In: Progress in Functional Analysis (Peníscola, 1990). North-Holland Mathematics Studies, vol. 170, pp. 57–84. North-Holland, Amsterdam (1992)Google Scholar
- 60.Vogt, D.: Fréchet valued real analytic functions. Bull. Soc. Roy. Sci. Liège 73(2–3), 155–170 (2004)MathSciNetzbMATHGoogle Scholar
- 61.Vogt, D.: Invariants and spaces of zero solutions of linear partial differential operators. Arch. Math. (Basel) 87(2), 163–171 (2006)MathSciNetzbMATHGoogle Scholar
- 62.Vogt, D.: On the splitting relation for Fréchet–Hilbert spaces. Funct. Approx. Comment. Math. 44(part 2), 215–225 (2011)MathSciNetzbMATHGoogle Scholar
- 63.Vogt, D., Wagner, M.J.: Charakterisierung der Quotientenräume von \(s\) und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980)MathSciNetzbMATHGoogle Scholar
- 64.Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
- 65.Wengenroth, J.: Retractive (LF)-spaces. Ph.D. thesis, University of Trier (1995)Google Scholar
- 66.Wengenroth, J.: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120(3), 247–258 (1996)MathSciNetzbMATHGoogle Scholar
- 67.Wengenroth, J.: A splitting theorem for subspaces and quotients of \(\fancyscript {D}^{\prime }\). Bull. Pol. Acad. Sci. Math. 49(4), 349–354 (2001)MathSciNetzbMATHGoogle Scholar
- 68.Wengenroth, J.: Derived Functors in Functional Analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003)zbMATHGoogle Scholar
Copyright information
© Springer-Verlag Italia S.r.l. 2017