Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type
Original Paper
First Online:
- 220 Downloads
Abstract
In the present investigation, we consider a new general subclass \(\mathcal {S}_{\Sigma }(\tau , \mu , \lambda , \gamma ; \phi )\) of the class \(\Sigma \) consisting of normalized analytic and bi-univalent functions in the open unit disk \(\mathbb {U}\). For functions belonging to the class introduced here, we find estimates on the Taylor-Maclaurin coeffcients \(|a_{2}|\) and \(|a_{3}|\). Several connections to some of the earlier known results are also pointed out.
Keywords
Analytic functions Bi-Univalent functions Coefficient estimates Bi-Starlike and bi-convex functions of complex order Principle of subordinationMathematics Subject Classifications
Primary 30C45 Secondary 30C50 30C80References
- 1.Altınkaya, Ş., Yalçın, S.: Initial coefficient bounds for a general class of bi-univalent functions. Int. J. Anal., 1–4 (2014) (Article ID 867871)MathSciNetCrossRefGoogle Scholar
- 2.Altınkaya, Ş., Yalçın, S.: Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points. J. Funct. Spaces (2015). (Article ID 145242, 1–5)Google Scholar
- 3.Brannan, D.A., Clunie, J.G. (eds.): Aspects of Contemporary Complex Analysis. In: Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham. Academic Press, New York, London (1980) (July 1–20, 1979)Google Scholar
- 4.Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31(2), 70–77 (1986)MathSciNetzbMATHGoogle Scholar
- 5.Çağlar, M., Deniz, E., Srivastava, H.M.: Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 41, 694–706 (2017)MathSciNetCrossRefGoogle Scholar
- 6.Deniz, E.: Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2(1), 49–60 (2013)MathSciNetCrossRefGoogle Scholar
- 7.Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, New York, Berlin, Heidelberg and Tokyo (1983)Google Scholar
- 8.Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24, 1569–1573 (2011)MathSciNetCrossRefGoogle Scholar
- 9.Hayami, T., Owa, S.: Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 22(4), 15–26 (2012)MathSciNetzbMATHGoogle Scholar
- 10.Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)MathSciNetCrossRefGoogle Scholar
- 11.Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions. Int. Math. Forum 7, 1495–1504 (2012)MathSciNetzbMATHGoogle Scholar
- 12.Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)MathSciNetCrossRefGoogle Scholar
- 13.Ma, W.C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li, Zhong, Ren, Fuyao, Yang, Lo, Zhang, Shunyan (eds.) Proceedings of the Conference on Complex Analysis (Tianjin, June 19–23, 1992), Conference Proceedings and Lecture Notes in Analysis, vol. I, pp. 157–169. International Press, Cambridge (1994)Google Scholar
- 14.Magesh, N., Yamini, J.: Coefficient estimates for a certain general subclass of analytic and bi-univalent functions. Appl. Math. 5, 1047–1052 (2014)CrossRefGoogle Scholar
- 15.Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(|z|<1\). Arch. Ration. Mech. Anal. 32, 100–112 (1969)MathSciNetCrossRefGoogle Scholar
- 16.Peng, Z., Murugusundaramoorthy, G., Janani, T.: Coefficient estimates of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014 (2014) (Article ID 693908, 1–6)MathSciNetCrossRefGoogle Scholar
- 17.Pommerenke, C.: Univalent Functions (with a Chapter on Quadratic Differentials by Gerd Jensen). Vandenhoeck and Ruprecht, Göttingen (1975)zbMATHGoogle Scholar
- 18.Srivastava, H.M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23, 242–246 (2015)MathSciNetCrossRefGoogle Scholar
- 19.Srivastava, H.M., Bulut, S., Çağlar, M., Yağmur, N.: Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 27, 831–842 (2013)MathSciNetCrossRefGoogle Scholar
- 20.Srivastava, H.M., Eker, S.S., Ali, R.M.: Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29, 1839–1845 (2015)MathSciNetCrossRefGoogle Scholar
- 21.Srivastava, H.M., Gaboury, S., Ghanim, F.: Coefficient estimates for some subclasses of \(m\)-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. No. 41, 153–164 (2015)MathSciNetzbMATHGoogle Scholar
- 22.Srivastava, H.M., Gaboury, S., Ghanim, F.: Initial coefficient estimates for some subclasses of \(m\)-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36, 863–871 (2016)MathSciNetzbMATHGoogle Scholar
- 23.Srivastava, H.M., Gaboury, S., Ghanim, F.: Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Mat. 28 (2017). https://doi.org/10.1007/s13370-016-0478-0 (in press)MathSciNetCrossRefGoogle Scholar
- 24.Srivastava, H.M., Joshi, S.B., Joshi, S.S., Pawar, H.: Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. Palest. J. Math. 5, 250–258 (2016) (Special Issue: 1)Google Scholar
- 25.Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)MathSciNetCrossRefGoogle Scholar
- 26.Srivastava, H.M., Murugusundaramoorthy, G., Vijaya, K.: Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator. J. Class. Anal. 2, 167–181 (2013)MathSciNetCrossRefGoogle Scholar
- 27.Srivastava, H.M., Sivasubramanian, S., Sivakumar, R.: Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 7(2), 1–10 (2014)MathSciNetCrossRefGoogle Scholar
- 28.Styer, D., Wright, J.: Result on bi-univalent functions. Proc. Am. Math. Soc. 82, 243–248 (1981)MathSciNetCrossRefGoogle Scholar
- 29.Tan, D.-L.: Coefficicent estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 5, 559–568 (1984)zbMATHGoogle Scholar
- 30.Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P.: The Fekete-Szegö functional problems for some classes of \(m\)-fold symmetric bi-univalent functions. J. Math. Inequal. 10, 1063–1092 (2016)MathSciNetCrossRefGoogle Scholar
- 31.Xu, Q.-H., Gui, Y.-C., Srivastava, H.M.: Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25, 990–994 (2012)MathSciNetCrossRefGoogle Scholar
- 32.Xu, Q.-H., Xiao, H.-G., Srivastava, H.M.: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimates problems. Appl. Math. Comput. 218, 11461–11465 (2012)MathSciNetzbMATHGoogle Scholar
- 33.Zaprawa, P.: Estimates of initial coefficients for bi-univalent functions. Abstr. Appl. Anal. 2014, 1–6 (2014) (Article ID 357480)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Italia S.r.l. 2017