Closed forms for derangement numbers in terms of the Hessenberg determinants

Original Paper

Abstract

In the paper, the authors find closed forms for derangement numbers in terms of the Hessenberg determinants, discover a recurrence relation of derangement numbers, present a formula for any higher order derivative of the exponential generating function of derangement numbers, and compute some related Hessenberg and tridiagonal determinants.

Keywords

Derangement number Closed form Hessenberg determinant Tridiagonal determinant Generating function Recurrence relation Derivative 

Mathematics Subject Classification

05A05 05A10 05A15 11B37 11B39 11B83 11B65 11B83 11C08 11C20 11Y55 15A15 65F40 

Notes

Acknowledgements

The second author was partially supported by China Postdoctoral Science Foundation with Grant No. 2015M582619. The authors are grateful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

References

  1. 1.
    Aigner, M.: A Course in Enumeration, Graduate Texts in Mathematics, vol. 238. Springer, Berlin (2007)Google Scholar
  2. 2.
    Andreescu, T., Feng, Z.: A Path to Combinatorics for Undergraduates—Counting Strategies. Birkhäuser, Boston (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Bourbaki, N.: Elements of Mathematics: Functions of a Real Variable: Elementary Theory, Translated from the 1976 French original by Philip Spain. Elements of Mathematics (Berlin). Springer, Berlin (2004). doi: 10.1007/978-3-642-59315-4
  4. 4.
    Cahill, N.D., D’Errico, J.R., Narayan, D.A., Narayan, J.Y.: Fibonacci determinants. Coll. Math. J 3, 221–225 (2002). doi: 10.2307/1559033 CrossRefMATHGoogle Scholar
  5. 5.
    Chen, C.-P., Liu, A.-Q., Qi, F.: Proofs for the limit of ratios of consecutive terms in Fibonacci sequence. Cubo Mat. Educ. 5(3), 23–30 (2003)MathSciNetMATHGoogle Scholar
  6. 6.
    Higgins, V., Johnson, C.: Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices. Linear Algebra Appl. 489, 104–122 (2016). doi: 10.1016/j.laa.2015.10.004
  7. 7.
    Martin, R.S., Wilkinson, J.H.: Handbook Series Linear Algebra: similarity reduction of a general matrix to Hessenberg form. Numer. Math. 12(5), 349–368 (1968). doi: 10.1007/BF02161358 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Qi, F.: A determinantal representation for derangement numbers. Glob. J. Math. Anal. 4(3), 17–17 (2016). doi: 10.14419/gjma.v4i3.6574 CrossRefGoogle Scholar
  9. 9.
    Qi, F.: Derivatives of tangent function and tangent numbers. Appl. Math. Comput. 268, 844–858 (2015). doi: 10.1016/j.amc.2015.06.123 MathSciNetGoogle Scholar
  10. 10.
    Qi, F., Chapman, R.J.: Two closed forms for the Bernoulli polynomials. J. Number Theory 159, 89–100 (2016). doi: 10.1016/j.jnt.2015.07.021 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Qi, F., Guo, B.-N.: Explicit formulas for derangement numbers and their generating function. J. Nonlinear Funct. Anal. 2016, Article ID 45 (2016)Google Scholar
  12. 12.
    Qi, F., Guo, B.-N.: Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant, Matematiche (Catania) 72(1) (2017). doi: 10.13140/RG.2.2.32352.07680
  13. 13.
    Qi, F., Shi, X.-T., Liu, F.-F.: Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers. Acta Univ. Sapientiae Math. 8(2), 282–297 (2016). doi: 10.1515/ausm-2016-0019 MathSciNetMATHGoogle Scholar
  14. 14.
    Qi, F., Wang, J.-L., Guo, B.-N.: A recovery of two determinantal representations for derangement numbers. Cogent Math. 3, 1232878 (2016). doi: 10.1080/23311835.2016.1232878 MathSciNetGoogle Scholar
  15. 15.
    Qi, F., Wang, J.-L., Guo, B.-N.: A representation for derangement numbers in terms of a tridiagonal determinant. Kragujevac J. Math. 42(1), 7–14 (2018)Google Scholar
  16. 16.
    Qi, F., Zhao, J.-L., Guo, B.-N.: Closed forms for derangement numbers in terms of the Hessenberg determinants (2016). doi: 10.20944/preprints201610.0035.v1 (preprints)
  17. 17.
    Wei, C.-F., Qi, F.: Several closed expressions for the Euler numbers. J. Inequal. Appl. 2015, 219 (2015). doi: 10.1186/s13660-015-0738-9 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wilf, H.S.: Generating Functionology, 2nd edn. Academic Press, Boston (1994)Google Scholar
  19. 19.
    Wilf, H.S.: Generating Functionology, 3rd edn. A K Peters Ltd, Wellesley (2006)Google Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  1. 1.Institute of MathematicsHenan Polytechnic UniversityJiaozuoChina
  2. 2.College of MathematicsInner Mongolia University for NationalitiesTongliaoChina
  3. 3.Department of Mathematics, College of ScienceTianjin Polytechnic UniversityTianjinChina
  4. 4.Department of Mathematics and InformaticsWeinan Normal UniversityWeinanChina
  5. 5.School of Mathematics and InformaticsHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations