Lineability within probability theory settings

  • J. Alberto Conejero
  • Mar Fenoy
  • Marina Murillo-Arcila
  • Juan B. Seoane-Sepúlveda
Original Paper


The search of lineability consists on finding large vector spaces of mathematical objects with special properties. Such examples have arisen in the last years in a wide range of settings such as in real and complex analysis, sequence spaces, linear dynamics, norm-attaining functionals, zeros of polynomials in Banach spaces, Dirichlet series, and non-convergent Fourier series, among others. In this paper we present the novelty of linking this notion of lineability to the area of Probability Theory by providing positive (and negative) results within the framework of martingales, random variables, and certain stochastic processes.


Lineability Spaceability Probability theory Random variable Stochastic process Martingale 

Mathematics Subject Classification

46E10 46E99 60B11 



This work was partially supported by Ministerio de Educación, Cultura y Deporte, projects MTM2013-47093-P and MTM2015-65825-P, by the Basque Government through the BERC 2014-2017 program and by the Spanish Ministerio de Economía y Competitividad: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.


  1. 1.
    Aizpuru, A., Pérez-Eslava, C., García-Pacheco, F.J., Seoane-Sepúlveda, J.B.: Lineability and coneability of discontinuous functions on \(\mathbb{R}\). Publ. Math. Debrecen 72(1–2), 129–139 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aron, R., Gurariy, V.I., Seoane, J.B.: Lineability and spaceability of sets of functions on \(\mathbb{R}\). Proc. Am. Math. Soc. 133(3), 795–803 (2005, electronic)Google Scholar
  3. 3.
    Aron, R.M., González, L.B., Pellegrino, D.M., Sepúlveda J.B.S.: Lineability: the search for linearity in mathematics. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)Google Scholar
  4. 4.
    Ash, R.B.: Real analysis and probability. Probability and mathematical statistics, No. 11. Academic Press, New York-London (1972)Google Scholar
  5. 5.
    Barbieri, G., García-Pacheco, F.J., Puglisi, D.: Lineability and spaceability on vector-measure spaces. Stud. Math. 219(2), 155–161 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bernal-González, L., Cabrera, M.O.: Lineability criteria, with applications. J. Funct. Anal. 266(6), 3997–4025 (2014)Google Scholar
  7. 7.
    Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.), 51(1), 71–130 (2014)Google Scholar
  8. 8.
    Berndt, B.C.: What is a \(q\)-series? In: Ramanujan rediscovered, Ramanujan Math. Soc. Lect. Notes Ser., vol. 14, pp. 31–51. Ramanujan Math. Soc., Mysore (2010)Google Scholar
  9. 9.
    Bertoloto, F.J., Botelho, G., Fávaro, V.V., Jatobá, A.M.: Hypercyclicity of convolution operators on spaces of entire functions. Ann. Inst. Fourier (Grenoble) 63(4), 1263–1283 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Billingsley, P.: Probability and measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn, A Wiley-Interscience Publication. Wiley, New York (1995)Google Scholar
  11. 11.
    Botelho, G., Fávaro, V.V.: Constructing Banach spaces of vector-valued sequences with special properties. Mich. Math. J. 64(3), 539–554 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cariello, D., Seoane-Sepúlveda, J.B.: Basic sequences and spaceability in \(\ell _p\) spaces. J. Funct. Anal. 266(6), 3797–3814 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drewnowski, L., Lipecki, Z.: On vector measures which have everywhere infinite variation or noncompact range. Dissertationes Math. (Rozprawy Mat.) 339, 39 (1995)Google Scholar
  14. 14.
    Dugundji, J.: Topology. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney (1978, Reprinting of the 1966 original, Allyn and Bacon Series in Advanced Mathematics)Google Scholar
  15. 15.
    Enflo, P.H., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366(2), 611–625 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fonf, V.P., Zanco, C.: Almost overcomplete and almost overtotal sequences in Banach spaces. J. Math. Anal. Appl. 420(1), 94–101 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gámez-Merino, J.L., Seoane-Sepúlveda, J.B.: An undecidable case of lineability in \(\mathbb{R}^{\mathbb{R}}\). J. Math. Anal. Appl. 401(2), 959–962 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gurariĭ, V.I.: Linear spaces composed of everywhere nondifferentiable functions. C. R. Acad. Bulgare Sci. 44(5), 13–16 (1991)MathSciNetGoogle Scholar
  19. 19.
    Muñoz-Fernández, G.A., Palmberg, N., Puglisi, D., Seoane-Sepúlveda, J.B.: Lineability in subsets of measure and function spaces. Linear Algebra Appl. 428(11–12), 2805–2812 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Walsh, J.B.: Martingales with a multidimensional parameter and stochastic integrals in the plane. In: Lectures in probability and statistics (Santiago de Chile, 1986), Lecture Notes in Math., vol. 1215, pp. 329–491. Springer, Berlin (1986)Google Scholar
  21. 21.
    Wise, G.L., Hall, E.B.: Counterexamples in probability and real analysis. The Clarendon Press, Oxford University Press, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y Aplicada (IUMPA)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.Departamento de Estadística e Investigación Operativa, Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain
  3. 3.BCAM-Basque Center for Applied MathematicsBilbaoSpain
  4. 4.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain
  5. 5.Departamento de Análisis Matemático, Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations