Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations

  • Wutiphol SintunavaratEmail author
Original Paper


The purpose of this work is to introduce new nonlinear mappings in setup of b-metric spaces and prove fixed point theorems for such mappings. Examples are provided in order to distinguish these results from the known ones. At the end of paper, we apply our fixed point result to prove the existence of a solution for the following nonlinear integral equation:
$$\begin{aligned} x(c) = \Omega (\phi (c),c ) + K(c,c,\phi (c))+\int ^b_a K(c,r,x(r))dr, \end{aligned}$$
where \(a,b\in \mathbb {R}\) with \(a<b\), \(x \in C[a,b]\) (the set of all continuous real functions defined on [ab]), \(\phi :[a,b]\rightarrow \mathbb {R}\), \(\Omega :\mathbb {R} \times [a,b]\rightarrow \mathbb {R}\) and \(K : [a,b] \times [a,b] \times \mathbb {R} \rightarrow \mathbb {R}\) are given mappings.


\(\alpha \)-Admissible mappings \(\alpha \)-Regularity b-metric spaces Hölder inequality Nonlinear integral equations 

Mathematics Subject Classification

47H09 47H10 



The author would like to thank the Thailand Research Fund and Thammasat University under Grant No. TRG5780013 for financial support during the preparation of this manuscript.


  1. 1.
    Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in partially ordered \(b\)-metric spaces. Math. Slovaca (2015, in press)Google Scholar
  2. 2.
    Alber, Y.I., Guerre-Delabriere, S.: Principle of weakly contractive maps in Hilbert spaces. In: New Results in Operator Theory and its Applications, vol. 98, pp. 7–22. Birkhuser, Basel (1997)Google Scholar
  3. 3.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, 133–181 (1922)zbMATHGoogle Scholar
  4. 4.
    Boriceanu, M., Bota, M., Petrusel, A.: Mutivalued fractals in \(b\)-metric spaces. Cent. Eur. J. Math. 8(2), 367–377 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bota, M., Molnar, A., Csaba, V.: On Ekelands variational principle in \(b\)-metric spaces. Fixed Point Theory 12, 21–28 (2011)Google Scholar
  6. 6.
    Chatterjea, S.K.: Fixed point theorems. C. R. Acad. Bulg. Sci. 25, 727–730 (1972)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chidume, C.E., Zegeye, H., Aneke, S.J.: Approximation of fixed points of weakly contractive nonself maps in Banach spaces. J. Math. Anal. Appl. 270(1), 189–199 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Choudhury, B.S., Metiya, N.: Fixed points of weak contractions in cone metric spaces. Nonlinear Anal. 72, 1589–1593 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116–2126 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Czerwik, S.: Contraction mappings in \(b\)-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Czerwik, S.: Nonlinear set-valued contraction mappings in \(b\)-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263–276 (1998)Google Scholar
  12. 12.
    Dutta, P.N., Choudhury, B.S.: A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 406368 (2008)Google Scholar
  13. 13.
    Dorić, D.: Common fixed point for generalized \(( \psi ,\varphi )\)-weak contractions. Appl. Math. Lett. 22, 1896–1900 (2009)Google Scholar
  14. 14.
    Kannan, R.: Some results on fixed points II. Am. Math. Mon. 76, 405–408 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khan, M.S., Swaleh, M., Sessa, S.: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1–9 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kumam, P., Sintunavarat, W.: The existence of fixed point theorems for partial \(q\)-set-valued quasi-contractions in \(b\)-metric spaces and related results. Fixed Point Theory Appl. 2014, 226 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Latif, A., Mongkolkeha, C., Sintunavarat, W.: Fixed point theorems for generalized \(\alpha \)-\(\beta \)-weakly contraction mappings in metric spaces and applications. Sci. World J. 2014, 784207 (2014)Google Scholar
  18. 18.
    Nieto, J.J., Rodíguez-López, R.: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) 23, 2205–2212 (2007)Google Scholar
  19. 19.
    Olatinwo, M.O.: Some results on multi-valued weakly jungck mappings in \(b\)-metric space. Cent. Eur. J. Math 6, 610–621 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pacurar, M.: Sequences of almost contractions and fixed points in \(b\)-metric spaces. Analele Univ. Vest Timis. Ser. Mat. Inform. XLVIII 3, 125–137 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Phiangsungnoen, S., Sintunavarat, W., Kumam, P.: Generalized Ulam–Hyer stability for fixed point equation in \(b\)-metric space via \(\alpha \)-admissible. Fixed Point Theory Appl. 2014, 188 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha \)-\(\psi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sintunavarat, W., Plubtieng, S., Katchang, P.: Fixed point result and applications on \(b\)-metric space endowed with an arbitrary binary relation. Fixed Point Theory Appl. 2013, 296 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sintunavarat, W.: A new approach to \(\alpha \)-\(\psi \)-contractive mappings and generalized Ulam–Hyers stability, well-posedness and limit shadowing results. Carpathian J. Math. 31(3), 395–401 (2015)Google Scholar
  26. 26.
    Zhang, Q., Song, Y.: Fixed point theory for generalized \(\phi \)-weak contractions. Appl. Math. Lett. 22(1), 75–78 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Faculty of Science and TechnologyThammasat University Rangsit CenterPathumthaniThailand

Personalised recommendations