Complete maximal hypersurfaces in certain spatially open generalized Robertson–Walker spacetimes

  • Alfonso Romero
  • Rafael M. Rubio
  • Juan J. Salamanca
Original Paper

Abstract

Uniqueness and non-existence results on maximal hypersurfaces lying between two spacelike slices in open generalized Robertson–Walker spacetimes are given. They are obtained from a known generalized maximum principle applied to a distinguished smooth function on a complete maximal hypersurface.

Keywords

Maximal hypersurface Generalized Robertson–Walker spacetime Maximum principle 

Mathematics Subject Classification

53C42 53C50 58J05 35J93 

References

  1. 1.
    Aiyama, R.: On the Gauss map of complete spacelike hypersurfaces of constant mean curvature in Minkowski space. Tsukuba J. Math. 16, 353–361 (1992)MATHMathSciNetGoogle Scholar
  2. 2.
    Alías, L.J., Montiel, S.: Uniqueness of spacelike hypersurfaces with constant mean curvature in generalized Robertson–Walker spacetimes. Differential geometry, Valencia, 2001, 59–69. World Science Publication, River Edge (2002)Google Scholar
  3. 3.
    Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes. Gen. Relat. Gravit. 27, 71–84 (1995)MATHCrossRefGoogle Scholar
  4. 4.
    Bartnik, R.: Existence of maximal surfaces in asymptotically flat spacetimes. Comm. Math. Phys. 94, 155–175 (1984)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Differ. Geom. 37, 31–71 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Brill, D.: Maximal surfaces in closed and open spacetimes, pp. 193–206. In: Proceedings on the First Marcel Grossman meeting on General Relativity, Trieste (1975)Google Scholar
  7. 7.
    Brill, D., Flaherty, F.: Isolated maximal surfaces in spacetime. Comm. Math. Phys. 50, 157–165 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calabi, E.: Examples of Bernstein problems for some non-linear equations. Proc. Symp. Pure Math. 15, 223–230 (1970)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cheng, S.Y., Yau, S.T.: Maximal space-like hypersurfaces in the Lorentz–Minkowski spaces. Ann. Math. 104, 407–419 (1976)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Choquet-Bruhat, Y.: Quelques propriétés des sousvariétés maximales d’une variété lorentzienne. C R Acad. Sci. Paris Ser. A B 281, 577–580 (1975)MATHMathSciNetGoogle Scholar
  11. 11.
    Choquet-Bruhat, Y.: General relativity and the einstein equations. Oxford University Press, Oxford (2009)Google Scholar
  12. 12.
    Marsden, J.E., Tipler, F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep. 66, 109–139 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Frankel, T.: Applications of Duscheks formula to cosmology and minimal surfaces. Bull. Am. Math. Soc. 81, 579–582 (1975)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lichnerowicz, A.: L’integration des equations de la gravitation relativiste et le probleme des n corps. J. Math. Pures Appl. 23, 37–63 (1944)MATHMathSciNetGoogle Scholar
  15. 15.
    Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    O’Neill, B.: Semi-Riemannnian geometry. Academic Press, New York (1983)Google Scholar
  17. 17.
    Nishikawa, S.: On maximal spacelike hypersurfaces in a Lorentzian manifold. Nagoya Math. J. 95, 117–124 (1984)MATHMathSciNetGoogle Scholar
  18. 18.
    Rainer, M., Schmidt, H.-J.: Inhomogeneous cosmological models with homogeneous inner hypersurface geometry. Gen. Relat. Gravit. 27, 1265–1293 (1995)Google Scholar
  19. 19.
    Romero, A., Rubio, R.M., Salamanca, J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson–Walker spacetimes. Class. Quantum Gravity 30, 115007 (13 pp) (2013)Google Scholar
  20. 20.
    Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Graduate Texts in Mathematics. Springer, New York (1977)Google Scholar
  21. 21.
    Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Xin, Y.L.: On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space. Comment. Math. Helv. 66, 590–598 (1991)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Alfonso Romero
    • 1
  • Rafael M. Rubio
    • 2
  • Juan J. Salamanca
    • 2
  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Matemáticas, Campus de RabanalesUniversidad de CórdobaCórdobaSpain

Personalised recommendations