Common fixed points for generalized \(\alpha \)-implicit contractions in partial metric spaces: consequences and application

  • Hassen AydiEmail author
  • Manel Jellali
  • Erdal Karapınar
Original Paper


In this paper, we introduce the concept of generalized \(\alpha \)-admissible pair of mappings generalizing the definition of \(\alpha \)-admissible mappings presented by Samet et al. (Nonlinear Anal 75:2154–2165, 2012). Based on above, we define generalized \(\alpha \)-implicit contractions in the setting of partial metric spaces and we provide some common fixed point results for such contractions. We also derive some consequences and corollaries from our obtained results. An application and some examples are presented making effective the new concepts and results.


Common fixed point Implicit contraction Partial metric space 

Mathematics Subject Classification

47H10 54H25 46J10 



The authors express their gratitude to the referees for constructive and useful remarks and suggestions. The authors gratefully also acknowledge the support from the Deanship of Scientific Research (DSR) at Dammam University during this research.


  1. 1.
    Abdeljawad, T., Karapınar, E., Tas, K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Altun, I., Erduran, A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011 (2011). Article ID 508730Google Scholar
  3. 3.
    Altun, I., Sola, F., Simsek, H.: Generalized contractions on partial metric spaces. Topol. Appl. 157(18), 2778–2785 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ali, M.U., Kamran, T., Karapınar, E.: On (\(\alpha,\psi,\eta \))-contractive multivalued mappings. Fixed Point Theory Appl. 2014, 7 (2014)CrossRefGoogle Scholar
  5. 5.
    Aliouche, A., Popa, V.: General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications. Novi Sad. J. Math. 39(1), 89–109 (2009)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Aydi, H.: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 4(2), 210–217 (2011)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Aydi, H.: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. (2011). Article ID 647091Google Scholar
  8. 8.
    Aydi, H.: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1–12 (2011)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Aydi, H.: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces. J. Nonlinear Anal. Optim. Theory Appl. 2(2), 33–48 (2011)MathSciNetGoogle Scholar
  10. 10.
    Aydi, H.: Common fixed point results for mappings satisfying \((\psi,\phi )\)-weak contractions in ordered partial metric space. Int. J. Math. Stat. 12(2), 53–64 (2012)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234–3242 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Aydi, H., Vetro, C., Sintunavarat, W., Kumam, P.: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012, 124 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Baskaran, R., Subrahmanyam, P.V.: A note on the solution of a class of functional equations. Appl. Anal. 22, 235–241 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bellman, R.: Methods of Nonliner Analysis, vol. II. Mathematics in Science and Engineering, vol. 61. Academic Press, New York (1973)Google Scholar
  15. 15.
    Berinde, V.: Approximating fixed points of implicit almost contractions. Hacet. J. Math. Stat. 41(1), 93–102 (2012)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ćrić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)Google Scholar
  18. 18.
    Ćirić, L.J., Samet, B., Aydi, H., Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218, 2398–2406 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Imdad, M., Kumar, S., Khan, M.S.: Remarks on some fixed point theorems satisfying implicit relations. Radovi Math. 1, 35–143 (2002)MathSciNetGoogle Scholar
  20. 20.
    Jleli, M., Karapınar, E., Samet, B.: Best proximity points for generalized \(\alpha -\psi \)-proximal contractive type mappings. J. Appl. Math. (2013). Article ID 534127Google Scholar
  21. 21.
    Jleli, M., Karapınar, E., Samet, B.: Fixed point results for \(\alpha -\psi _\lambda \) contractions on gauge spaces and applications. Abstr. Appl. Anal. (2013). Article ID 730825Google Scholar
  22. 22.
    Karapınar, E., Erhan, I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24(11), 1900–1904 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Karapınar, E., Samet, B.: Generalized \(\alpha \)-\(\psi \)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012 (2012). Article ID 793486Google Scholar
  24. 24.
    Matthews, S.G.: Partial metric topology. In: Proceedings of the 8th Summer Conference on General Topology and Applications, vol. 728, pp. 183–197. Annals of the New York Academy of Sciences (1994)Google Scholar
  25. 25.
    Mohammadi, B., Rezapour, Sh, Shahzad, N.: Some results on fixed points of \(\alpha \)-\(\psi \)-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 24 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Popa, V.: Fixed point theorems for implicit contractive mappings. Stud. Cerc. St. Ser. Mat. Univ. Bacau 7, 129–133 (1997)Google Scholar
  27. 27.
    Popa, V.: Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math. 32, 157–163 (1999)zbMATHGoogle Scholar
  28. 28.
    Popa, V.: A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation. Filomat 19, 45–51 (2005)zbMATHCrossRefGoogle Scholar
  29. 29.
    Popa, V., Patriciu, A.M.: A general fixed point theorem for pairs of weakly compatible mappings in \(G\)-metric spaces. J. Nonlinear Sci. Appl. 5, 151–160 (2012)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha \)-\(\psi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Samet, B., Vetro, C., Vetro, F.: From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013, 5 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vetro, C., Vetro, F.: Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results. Topol. Appl. 164, 125–137 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Vetro, C., Vetro, F.: Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6(3), 152–161 (2013)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Vetro, F., Radenović, S.: Nonlinear \(\psi \)-quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 219(4), 1594–1600 (2012)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Departement of Mathematics, College of Education of JubailDammam UniversityIndustrial Jubail Saudi Arabia
  2. 2.Department of MathematicsAtilim UniversityAnkaraTurkey

Personalised recommendations