On the subadditivity of Montesinos complexity of closed orientable 3-manifolds

  • Álvaro Lozano
  • Rubén Vigara
Original Paper


A filling Dehn sphere \(\varSigma \) in a closed 3-manifold \(M\) is a sphere transversely immersed in \(M\) that defines a cell decomposition of \(M\). Every closed 3-manifold has a filling Dehn sphere Montesinos-Amilibia (Contribuciones Matemáticas: Homenaje a Joaquín Arregui Fernández, Editorial Complutense, pp 239–247, 2000). The Montesinos complexity of a \(3\)-manifold \(M\) is defined as the minimal number of triple points among all the filling Dehn spheres of \(M\). A sharp upper bound for the Montesinos complexity of the connected sum of two 3-manifolds is given.


3-Manifold Immersed surface Filling Dehn sphere Triple points Complexity of 3-manifolds 

Mathematics Subject Classification (2010)

57N10 57N35 



The authors sincerely thank to the referees for their valuable comments and suggestions. We also thank Prof. J.M. Montesinos for his advices about the content of this paper.


  1. 1.
    Amendola, G.: A 3-manifold complexity via immersed surfaces. J. Knot Theory Ramif. 19(12), 1549–1569 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Fenn, R., Rourke, C.: Nice spines on 3-manifolds. Topol. Low-dimens. Manifolds LNM 722, 31–36 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Haken, W.: Some special presentations of homotopy 3-spheres. Topol. Conf. LNM 375, 97–107 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma. Math. Ann. 110, 312–320 (1935)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma II. Math. Ann. 115, 658–669 (1938)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kirby, R.: Problems in low-dimensional topology, electronic. (1995)
  7. 7.
    Matveev, S.V.: Complexity theory of three-dimensional manifolds. Acta Appl. Math. 19, 101–130 (1990)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Montesinos-Amilibia, J.M.: Representing 3-manifolds by Dehn spheres. In: Contribuciones Matemáticas: Homenaje a Joaquín Arregui Fernández, Editorial Complutense, pp. 239–247 (2000)Google Scholar
  9. 9.
    Papakyriakopoulos, C.D.: On Dehn’s Lemma and the asphericity of knots. Ann. Math. 66(2), 1–26 (1957)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Shima, A.: Immersions from the 2-sphere to the 3-sphere with only two triple points. Topology of real singularities and related topics (Japanese) (Kyoto, 1997). Sūrikaisekikenkyūsho Kōkyūroku 1006, 146–160 (1997)Google Scholar
  11. 11.
    Vigara, R.: Representación de 3-variedades por esferas de Dehn rellenantes. PhD Thesis, UNED, Madrid (2006)Google Scholar
  12. 12.
    Vigara, R.: A set of moves for Johansson representation of 3-manifolds. Fund. Math. 190, 245–288 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Vigara, R.: Lifting filling Dehn spheres. J. Knot Theory Ramif. 21(8), 7 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Centro Universitario de la Defensa ZaragozaZaragozaSpain
  2. 2.IUMA, Universidad de ZaragozaZaragozaSpain

Personalised recommendations