Connecting mathematics learning through spatial reasoning

  • Joanne Mulligan
  • Geoffrey Woolcott
  • Michael Mitchelmore
  • Brent Davis
Original Article

Abstract

Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

Keywords

Spatial reasoning Mathematics curriculum and pedagogy Primary students Network analysis 

References

  1. Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241. doi: 10.1023/A:102431232107.
  2. Australian Curriculum and Reporting Authority (ACARA). (2015). The Australian Curriculum—Mathematics Version 8.1 Retrieved from https://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10.
  3. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET for windows: software for social network analysis [computer software]. Harvard, MA: Analytic Technologies.Google Scholar
  4. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895. doi: 10.1126/science.1165821.CrossRefGoogle Scholar
  5. Bruce, C., Sinclair, N., Moss, J., Hawes, Z., & Caswell, B. (2015). Spatializing the curriculum. In B. Davis & the Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early years: principles, assertions, and speculations (pp. 85–106). New York: Routledge.Google Scholar
  6. Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., … Woolcott, G. (2016). Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, Online First, 1–19. doi: 10.1007/s10649-016-9743-2.
  7. Butterworth, B. (2015). Low numeracy: from brain to education. In X. Sun, B. Kaur, & J. Novotná (Eds.), Proceedings of the twenty-third ICMI Study: Primary Mathematics Study on Whole Numbers (pp. 21–33). Macao: University of Macau.Google Scholar
  8. Commonwealth of Australia, Department of the Prime Minister and Cabinet (2015). National innovation and science agenda. Available from http://www.innovation.gov.au/page/agenda.
  9. Davis, B., & the Spatial Reasoning Study Group. (2015). Spatial reasoning in the early years: Principles, assertions, and speculations. New York: Routledge.Google Scholar
  10. Dehaene, S. (2011). The number sense: how the mind creates mathematics. New York, NY: Oxford University Press.Google Scholar
  11. Devlin, K. J. (2012). Introduction to mathematical thinking. Palo Alto, CA: Keith Devlin.Google Scholar
  12. English, L. D. (2012). Data modeling with first-grade students. Educational Studies in Mathematics, 81, 15–30.CrossRefGoogle Scholar
  13. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256. doi: 10.1016/j.learninstruc.2005.04.005.
  14. Hawes, Z., Tepylo, D., & Moss, J. (2015). Developing spatial thinking: implications for early mathematics education. In B. Davis & Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early years: Principles, assertions and speculations (pp. 29–44). New York: Routledge.Google Scholar
  15. Kell, H., Lubinski, D., Benbow, C., & Stieger, J. (2013). Who rises to the top? Early indicators. Psychological Science, 24(5), 648–659. doi: 10.1177/0956797612457784.
  16. Mulligan, J. T. (2015). Moving beyond basic numeracy: data modeling in the early years of schooling. ZDM Mathematics Education, 47(4), 653–663.CrossRefGoogle Scholar
  17. Mulligan, J. T., & Mitchelmore, M. C. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49. doi: 10.1007/BF03217544.
  18. Mulligan, J. T., & Mitchelmore, M. C. (2016). Pattern and Structure Mathematical Awareness Program (PASMAP) books 1 and 2.  Camberwell VIC: Australian Council for Educational Research Press.Google Scholar
  19. Mulligan, J. T., & Woolcott, G. (2015). What lies beneath? The conceptual connectivity underpinning whole number arithmetic. In X. Sun, B. Kaur, & J. Novotná (Eds.), Proceedings of the twenty-third ICMI study: Primary Mathematics Study on Whole Numbers (pp. 220–228). Macao: University of Macau.Google Scholar
  20. Mulligan, J. T., English, L. D., Mitchelmore, M. C., & Crevensten, N. (2013). Reconceptualising early mathematics learning: The fundamental role of pattern and structure. In L. D. English & J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 47–66). New York: Springer.CrossRefGoogle Scholar
  21. Mulligan, J. T., & Mitchelmore, M. C., & Stephanou, A. (2015). Pattern and Structure Assessment (PASA): an assessment program for early mathematics (Years F–2) teacher guide. Camberwell VIC: Australian Council for Educational Research Press.Google Scholar
  22. Newcombe, N. S., & Shipley, T. F. (2013). Seeing relationships: Using spatial thinking to teach science, mathematics, and social studies. American Educator, 37(1), 26.Google Scholar
  23. Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268. doi: 10.5951/jresematheduc.42.3.0237.
  24. Ramful, A., Ho, S. Y., & Lowrie, T. (2015). Visual and analytical strategies in spatial visualization: Perspectives from bilateral symmetry and reflection. Mathematics Education Research Journal, 27(4), 443–470. doi: 10.1007/s13394-015-0144-0.
  25. Raven, J. (2004). Coloured progressive matrices Crichton vocabulary scale—manual. London: Pearson.Google Scholar
  26. Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120–137. doi: 10.1016/j.jecp.2014.03.006.
  27. Stephanou, A., & Lindsey, J. (2013). Progressive achievement tests in mathematics (PATMaths) (4th ed.). Camberwell VIC: Australian Council for Educational Research Press.Google Scholar
  28. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. doi: 10.1177/0963721413484756.
  29. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062–1076. doi: 10.1111/cdev.12165.
  30. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.CrossRefGoogle Scholar
  31. Warren, E., & Cooper, T. J. (2008). Generalising the pattern rule for visual growth patterns: actions that support 8 year olds’ thinking. Education Studies in Mathematics, 67, 171–185. doi: 10.1007/s10649-007-9092-2.
  32. Woolcott, G., Chamberlain, D., Scott, A., & Sadeghi, R. (2014). Mapping concept interconnectivity in mathematics using network analysis. In P. Liljedah, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (vol. 5) (pp. 385–392). Vancouver: PME.Google Scholar
  33. Woolcott, G., Chamberlain, D., & Mulligan, J. (2015). Using network analysis to connect structural relationships in early mathematics assessment. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, (vol. 4) (pp. 321–328). Hobart: PME.Google Scholar

Copyright information

© Mathematics Education Research Group of Australasia, Inc. 2017

Authors and Affiliations

  • Joanne Mulligan
    • 1
  • Geoffrey Woolcott
    • 2
  • Michael Mitchelmore
    • 3
  • Brent Davis
    • 4
  1. 1.Department of Educational StudiesMacquarie UniversitySydneyAustralia
  2. 2.School of EducationSouthern Cross UniversityEast LismoreAustralia
  3. 3.Department of Educational StudiesMacquarie UniversitySydneyAustralia
  4. 4.Werklund School of EducationUniversity of CalgaryCalgaryCanada

Personalised recommendations