Plasma-Assisted Synthesis of Bicrystalline ZnS Nanobelts with Enhanced Photocatalytic Ability

  • Qiushi WangEmail author
  • Junhong Li
  • Wei Zhang
  • Min Zhong
Original Article - Nanomaterials


ZnS nanobelts have been synthesized by a reaction of Zn and S powders using the simple arc discharge method. The products were characterized using X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, as well as energy-dispersive X-ray spectrometer. The results reveal that the ZnS nanobelts exhibit bicrystalline nanostructure. The roles of ion bombardment and plasma species in the growth of bicrystalline ZnS nanobelts are discussed. The ZnS nanobelts exhibit strong emission peaked at 516 nm under a 373 nm UV light excitation and excellent photocatalytic ability for degradation of methylene blue. This work represents a new strategy to synthesize bicrystalline nanostructures for design of optoelectronic nanodevices and photocatalysts.

Graphic Abstract


Nanocrystalline materials Luminescence Bicrystalline ZnS Photocatalytic degradation 



This study was supported financially by the National Natural Science Foundation of China (Grant No. 11504028) and Liaoning Natural Foundation for Guidance Program (Grant No. 2019-ZD-0490).


  1. 1.
    Chong, M.N., Jin, B., Chow, C.W.K., Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)CrossRefGoogle Scholar
  2. 2.
    Martinez-Huitle, C.A., Brillas, E.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B Environ. 87, 105–145 (2009)CrossRefGoogle Scholar
  3. 3.
    Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  4. 4.
    Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., Gernjak, W.: Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009)CrossRefGoogle Scholar
  5. 5.
    Lee, G.J., Wu, J.J.: Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol. 318, 8–22 (2017)CrossRefGoogle Scholar
  6. 6.
    Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Yoshio, B., Golberg, D.: ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011)CrossRefGoogle Scholar
  7. 7.
    Xiong, S.L., Xi, B.J., Wang, C.M., Xu, D.C., Feng, X.M., Zhu, Z.C., Qian, Y.T.: Tunable synthesis of various Wurtzite ZnS architectural structures and their photocaltalytic properties. Adv. Funct. Mater. 17, 2728–2738 (2007)CrossRefGoogle Scholar
  8. 8.
    Liu, J., Guo, Z.P., Wang, W.J., Huang, Q.S., Zhu, K.X., Chen, X.L.: Heterogeneous ZnS hollow urchin-like hierarchical nanostructures and their structure-enhanced photocatalytic properties. Nanoscale 3, 1470–1473 (2011)CrossRefGoogle Scholar
  9. 9.
    Jothibas, M., Manoharan, C., Jeyakumar, S.J., Praveen, P., Punithavathy, I.K., Richard, J.P.: Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018)CrossRefGoogle Scholar
  10. 10.
    Pouretedal, H.R., Norozi, A., Keshavarz, M.H., Semnani, A.: Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162, 674–681 (2009)CrossRefGoogle Scholar
  11. 11.
    Chauhan, R., Kumar, A., Chaudhary, R.P.: Photocatalytic degradation of methylene blue with Cu doped ZnS nanoparticles. J. Lumin. 145, 6–12 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, H.J., Zhou, Y., Tu, W.G., Ye, J.H., Zou, Z.G.: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015)CrossRefGoogle Scholar
  13. 13.
    Xie, Y.P., Yu, Z.B., Liu, G., Ma, X.L., Cheng, H.M.: CdS-mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 7, 1895–1901 (2014)CrossRefGoogle Scholar
  14. 14.
    Deka, D.C., Kalita, A., Bardaloi, S., Kalita, M.P.C.: Influence of capping agent on structural, optical and photocatalytic properties of ZnS nanocrystals. J. Lumin. 210, 269–275 (2019)CrossRefGoogle Scholar
  15. 15.
    Rajabi, H.R., Farsi, M.: Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)CrossRefGoogle Scholar
  16. 16.
    Bai, S., Zhang, N., Gao, C., Xiong, Y.J.: Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018)CrossRefGoogle Scholar
  17. 17.
    Hao, X.Q., Wang, Y.C., Zhou, J., Cui, Z.W., Wang, Y., Zou, Z.G.: Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 221, 302–311 (2018)CrossRefGoogle Scholar
  18. 18.
    Liu, M.C., Jing, D.W., Zhou, Z.H., Guo, L.J.: Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 4, 2278 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Xu, Q., Feng, Z., Li, M., Li, C.: Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 47, 1766–1769 (2008)CrossRefGoogle Scholar
  20. 20.
    He, K., Wang, M., Guo, L.J.: Novel-CdS-nanorod with stacking fault structures: preparation and properties of visible-light-driven photocatalytic hydrogen production from water. Chem. Eng. J. 279, 747–756 (2015)CrossRefGoogle Scholar
  21. 21.
    Liu, M.C., Wang, L.Z., Lu, G.Q., Yao, X.D., Guo, L.J.: Twins in Cd1 xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372–1378 (2011)CrossRefGoogle Scholar
  22. 22.
    Yin, B., Huang, X., Mishra, R., Sadtler, B.: Compositionally induced twin defects control the shape of ternary silver halide nanocrystals. Chem. Mater. 29, 1014–1021 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhang, X.L., Liu, B.D., Liu, Q.Y., Yang, W.J., Xiong, C.M., Li, J., Jiang, X.: Ultrasensitive and highly selective photodetections of UV—a rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9, 2669–2677 (2017)CrossRefGoogle Scholar
  24. 24.
    Carim, A.H., Lew, K.K., Redwing, J.M.: Bicrystalline silicon nanowires. Adv. Mater. 13, 1489–1491 (2001)CrossRefGoogle Scholar
  25. 25.
    Shen, G.Z., Chen, P.C., Bando, Y., Golberg, D., Zhou, C.W.: Bicrystalline Zn(3)P(2) and Cd(3)P(2) nanobelts and their electronic transport properties. Chem. Mater. 20, 7319–7323 (2008)CrossRefGoogle Scholar
  26. 26.
    Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., Hu, J.Q., Golberg, D.: Needlelike bicrystalline GaN nanowires with excellent field emission properties. J. Phys. Chem. B. 109, 17082–17085 (2005)CrossRefGoogle Scholar
  27. 27.
    Kar, S., Chaudhuri, S.: Synthesis and optical properties of single and bicrystalline ZnS nanoribbons. Chem. Phys. Lett. 414, 40–46 (2005)CrossRefGoogle Scholar
  28. 28.
    Jie, J.S., Zhang, W.J., Jiang, Y., Meng, X.M., Zapien, J.A., Shao, M.W., Lee, S.T.: Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition. Nanotechnology 17, 2913–2917 (2006)CrossRefGoogle Scholar
  29. 29.
    Wang, Q.S., Xie, Y.H., Zhang, J., Cong, R.D.: Synthesis, photoluminescence and ferromagnetic properties of pencil-like Y doped AlN microrods. Ceram. Int. 43, 3319–3323 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhu, G., Wu, W.Z., Xin, S.Y., Zhang, J., Wang, Q.S.: Plasma-assisted synthesis of ZnSe hollow microspheres with strong red emission. J. Lumin. 206, 33–38 (2019)CrossRefGoogle Scholar
  31. 31.
    Ma, L.G., Luo, H., Wang, W., Li, L., Zhang, F.M., Wu, X.S.: Structural and optical properties of the ZnS nanobelts grown on Zn foil via a simple method. Mater. Lett. 139, 364–367 (2015)CrossRefGoogle Scholar
  32. 32.
    Kim, J.H., Rho, H., Kim, J., Choi, Y.J., Park, J.G.: Raman spectroscopy of ZnS nanostructures. J. Raman Spectrosc. 43, 906–910 (2012)CrossRefGoogle Scholar
  33. 33.
    Fan, X., Zhang, M.L., Shafiq, I., Zhang, W.J., Lee, C.S., Lee, S.T.: Bicrystalline CdS nanoribbons. Cryst. Growth Des. 9, 1375–1377 (2009)CrossRefGoogle Scholar
  34. 34.
    Liu, B.D., Bando, Y., Liao, M.Y., Tang, C.C., Mitome, M., Golberg, D.: Bicrystalline ZnS microbelts. Cryst. Growth Des. 9, 2790–2793 (2009)CrossRefGoogle Scholar
  35. 35.
    Xu, C.K., Youkey, S., Wu, J.F., Jiao, J.: Electrical behavior of ferromagnetic BiMn-Codoped ZnO bicrystal nanobelts to Pt contacts. J. Phys. Chem. C 111, 12490–12494 (2007)CrossRefGoogle Scholar
  36. 36.
    Meng, X.M., Jiang, Y., Liu, J., Lee, C.S.: Synthesis and characterization of ZnS bicrystal nanoribbons. Appl. Phys. Lett. 83, 2244–2246 (2003)CrossRefGoogle Scholar
  37. 37.
    Dai, S., Zhao, J., He, M.R., Wu, H., Xie, L., Zhu, J.: New twin structures in GaN nanowires. J. Phys. Chem. C 117, 12895–12901 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhang, J., Zhu, H.Y., Wu, X.X., Cui, H., Li, D.M., Jiang, J.R., Gao, C.X., Wang, Q.S., Cui, Q.L.: Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets. Nanoscale 7, 10807–10816 (2015)CrossRefGoogle Scholar
  39. 39.
    Yu, J.H., Joo, J., Park, H.M., Baik, S.I., Kim, Y.W., Kim, S.C., Hyeon, T.: Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005)CrossRefGoogle Scholar
  40. 40.
    Khaparde, R., Acharya, S.: Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 163, 49–57 (2016)CrossRefGoogle Scholar
  41. 41.
    Meng, X.M., Liu, J., Jiang, Y., Chen, W.W., Lee, C.S., Bello, I., Lee, S.T.: Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 382, 434–438 (2003)CrossRefGoogle Scholar
  42. 42.
    Bol, A.A., Meijerink, A.: Long-lived Mn2+ emission in nanocrystalline ZnS: Mn2+. Phys. Rev. B 58, 15997–16000 (1998)CrossRefGoogle Scholar
  43. 43.
    Ye, C.H., Fang, X.S., Li, G.H., Zhang, L.D.: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004)CrossRefGoogle Scholar
  44. 44.
    Tsuruoka, T., Liang, C.H., Terabe, K., Hasegawa, T.: Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy. Appl. Phys. Lett. 92, 091908 (2008)CrossRefGoogle Scholar
  45. 45.
    Yan, Y.F., Al-Jassim, M.M., Demuth, T.: Energetics and effects of planar defects in CdTe. J. Appl. Phys. 90, 3952–3955 (2001)CrossRefGoogle Scholar
  46. 46.
    Wang, X.L., Shi, J.Y., Feng, Z.C., Li, M.R., Li, C.: Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys. 13, 4715–4723 (2011)CrossRefGoogle Scholar
  47. 47.
    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001)CrossRefGoogle Scholar
  48. 48.
    Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M., Ye, J.H.: Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  49. 49.
    Billig, E., Ridout, M.S.: Transmission of electrons and holes across a twin boundary in germanium. Nature 173, 496–497 (1954)CrossRefGoogle Scholar
  50. 50.
    Mahvelati-Shamsabadi, T., Goharshadi, E.K.: Photostability and visible-light-driven photoactivity enhancement of hierarchical ZnS nanoparticles: the role of embedment of stable defect sites on the catalyst surface with the assistant of ultrasonic waves. Ultrason. Sonochem. 34, 78–89 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.College of New EnergyBohai UniversityJinzhouPeople’s Republic of China
  2. 2.College of Mathematics and PhysicsBohai UniversityJinzhouPeople’s Republic of China

Personalised recommendations