Enhanced Ultra-violet Photodetection Based on a Heterojunction Consisted of ZnO Nanowires and Single-Layer Graphene on Silicon Substrate

  • Yu LiuEmail author
  • Zengcai SongEmail author
  • Sheng Yuan
  • Lei Xu
  • Yanhui Xin
  • Meixia Duan
  • Shuxia Yao
  • Yangrui Yang
  • Zhenwei Xia
Original Article - Nanomaterials


In this study, heterojunction photoelectric devices based ZnO nanowires were fabricated on p-Si substrate with and without single-layer graphene as insert layer. ZnO nanowires and graphene were prepared by hydrothermal method and chemical vapor deposition respectively. The effect of insert layer on the morphology of ZnO nanowires was very weak as can be seen from scanning electron microscope and X-ray diffraction. Raman scattering showed that the graphene prepared was a single-layer structure. The ultraviolet detection performance of photodetectors with single graphene insert layer was much better than that of photodetectors without single graphene insert layer. The ultraviolet irradiation sensitivity of photodetectors with single graphene insert layer was up to 1071 which was improved 7 times than that of photodetectors without single graphene insert layer. Moreover, photodetectors with single graphene insert layer had faster response time (1.02 s) and recovery time (0.34 s).

Graphic Abstract


UV photodetection Heterojunction ZnO nanowires Single-layer graphene 



This work was financially supported by the National Natural Science Foundation of China (61904054, 11574083), the Project Plan of Key Scientific Research in University of Henan Province (19A510003), and Science and Technology Development Program in Henan Province (192102210081). The authors thank Professor Guojia Fang of Wuhan University for his help and suggestions. The authors also thank the nanocenter of Wuhan University for XRD, Raman and SEM measurements.

Supplementary material

13391_2019_186_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 kb)


  1. 1.
    Li, B., Zhou, K., Chen, Z., Song, Z., Zhang, D., Fang, G.: NH4F-assisted one-pot solution synthesis of hexagonal ZnO microdiscs for efficient ultraviolet photodetection. R. Soc. Open Sci. 5, 180822 (2018)CrossRefGoogle Scholar
  2. 2.
    Boruan, B.D., Misra, A.: Conjugated assembly of colloidal zinc oxide quantum dots and multiwalled carbon nanotubes for an excellent photosensitive ultraviolet photodetector. Nanotechnology 27, 355204 (2016)CrossRefGoogle Scholar
  3. 3.
    Roul, B., Pant, R., Chirakkara, S., Chandan, G., Nanda, K.K., Krupanidhi, S.B.: Enhanced UV photodetector response of ZnO/Si with AlN buffer layer. IEEE Trans. Electron. Dev. 64, 4161–4166 (2017)CrossRefGoogle Scholar
  4. 4.
    Liu, D., Li, H., Gao, J., Zhao, S., Zhu, Y., Wang, P., Wang, D., Chen, A., Wang, X., Yang, J.: High-performance ultraviolet photodetector based on graphene quantum dots decorated ZnO nanorods/GaN film isotype heterojunctions. Nanoscale Res. Lett. 13, 261 (2018)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z., Huang, J., Chen, S., Pan, X., Chen, L., Ye, Z.: A method of combining the increased density of acceptors with restrained density of oxygen vacancies to fabricate p-type single-crystalline ZnO films. J. Electron. Mater. 48, 780–786 (2019)CrossRefGoogle Scholar
  6. 6.
    Hsu, C.L., Jhang, B.Y., Kao, C., Hsueh, T.J.: UV-illumination and Au-nanoparticles enhanced gas sensing of p-type Nadoped ZnO nanowires operating at room temperature. Sensor Actuat. B Chem. 274, 565–574 (2018)CrossRefGoogle Scholar
  7. 7.
    Senthikumar, K., Yoshida, T., Fujita, F.: Formation of D-VZn complex defects and possible p-type conductivity of ZnO nanoparticle via hydrogen adsorption. J. Mater. Sci. 53, 22977–22985 (2018)Google Scholar
  8. 8.
    Chen, Y.P., Zheng, C.H., Hu, L.Q., Chen, Y.R.: Improved performance of a back-illuminated GaN-based metalsemiconductor-metal ultraviolet photodetector by in situ modification of one-dimensional ZnO nanorods on its screw dislocations. J. Alloys Compd. 775, 1213–1220 (2019)CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Liu, B., Yang, W., Jia, W., Li, J., Jiang, C., Jiang, X.: 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 8, 17573–17580 (2016)CrossRefGoogle Scholar
  10. 10.
    Ning, L., Jiang, T., Shao, Z., Ding, K., Zhang, X., Jie, J.: Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. J. Mater. Chem. C 6, 7077–7084 (2018)CrossRefGoogle Scholar
  11. 11.
    Wu, Z., Li, X., Zhong, H., Zhang, S., Wang, P., Kim, T., Kwak, S.S., Liu, C., Chen, H., Kim, S.W., Lin, S.: Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector. Opt. Express 23, 18864–18871 (2015)CrossRefGoogle Scholar
  12. 12.
    Sahare, P.D., Kumar, S., Kumar, S., Slngh, F.: n-ZnO/p-Si heterojunction nanodiodes based sensor for monitoring UV radiation. Sensor Actuat. A Phys. 279, 351–360 (2018)CrossRefGoogle Scholar
  13. 13.
    Yin, B., Zhang, H., Qiu, Y., Luo, Y., Zhao, Y., Hu, L.: The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination. Nanoscale 9, 17199–17206 (2017)CrossRefGoogle Scholar
  14. 14.
    Kim, D.C., Jung, B.O., Lee, J.H., Cho, H.K., Lee, J.Y., Lee, J.H.: Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers. Nanotechnology 22, 265506 (2011)CrossRefGoogle Scholar
  15. 15.
    Wang, H., Zhao, Y., Wu, C., Wu, G., Ma, Y., Dong, X., Zhang, B., Du, G.: Ultraviolet electroluminescence properties from devices based on n-ZnO/i-NiO/p-Si light-emitting diode. Opt. Commun. 395, 94–97 (2017)CrossRefGoogle Scholar
  16. 16.
    Bai, Z., Liu, F., Liu, J., Zhang, Y.: Enhanced photoelectrochemical performance of n-Si/nZnO nanowire arrays using graphene interlayers. J. Mater. Sci. 52, 10497–10505 (2017)CrossRefGoogle Scholar
  17. 17.
    Ding, J., Yan, X., Xue, Q.: Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates. Mater. Chem. Phys. 133, 405–409 (2012)CrossRefGoogle Scholar
  18. 18.
    Liang, Q., Qiao, F., Cui, X., Hou, X.: Controlling the morphology of ZnO structures via low temperature hydrothermal method and their optoelectronic application. Mat. Sci. Semicon. Proc. 89, 154–160 (2019)CrossRefGoogle Scholar
  19. 19.
    Peng, M., Wang, Y., Shen, Q., Xie, X., Zheng, H., Ma, W., Wen, Z., Sun, X.: High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure. Sci China Mater. 62, 225–235 (2019)CrossRefGoogle Scholar
  20. 20.
    Zhang, W., Jiang, D., Zhao, M., Duan, Y., Zhou, X., Yang, X., Shan, C., Qin, J., Gao, S., Liang, Q., Hou, J.: Piezo-phototronic effect for enhanced sensitivity and response range of ZnO thin film flexible UV photodetectors. J. Appl. Phys. 125, 024502 (2019)CrossRefGoogle Scholar
  21. 21.
    Li, F., Peng, W., Pan, Z., He, Y.: Optimization of Si/ZnO/PEDOT:PSS tri-layer heterojunction photodetector by piezo-phototronic effect using both positive and negative piezoelectric charges. Nano Energy 48, 27–34 (2018)CrossRefGoogle Scholar
  22. 22.
    Lian, Q., Chen, M., Mokhtar, M.Z., Wu, S., Zhu, M., Whittaker, E., Brien, P.O., Saunders, B.R.: Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films. Phys. Chem. Chem. Phys. 20, 12260–12271 (2018)CrossRefGoogle Scholar
  23. 23.
    Park, T., Lee, K.E., Kim, N., Oh, Y., Yoo, J.K., Um, M.K.: Aspect ratio-controlled ZnO nanorods for highly sensitive wireless ultraviolet sensor applications. J. Mater. Chem. C 5, 12256–12263 (2017)CrossRefGoogle Scholar
  24. 24.
    Tiong, T.Y., Dee, C.F., Hamzah, A.A., Goh, B.T., Wong, Y.Y., Doi, L., Majlis, B.Y., Salleh, M.M., Ahmad, I.: A rapid responding ultraviolet sensor based on multi-parallel aligned ZnO nanowires field effect transistor. Sensor Actuat. A Phys. 260, 139–145 (2017)CrossRefGoogle Scholar
  25. 25.
    Samir, N., Eissa, D.S., Allam, N.K.: Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications. Mater. Lett. 137, 45–48 (2014)CrossRefGoogle Scholar
  26. 26.
    Kim, Y.J., Lee, J.H., Yi, G.C.: Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 95, 213101 (2009)CrossRefGoogle Scholar
  27. 27.
    Lee, J.M., Choung, J.W., Yi, J., Lee, D.H., Samal, M., Yi, D.K., Lee, C.H., Yi, G.C., Paik, U., Rogers, J.A., Park, W.I.: Vertical pillar-superlattice array and graphene hybrid light emitting diodes. Nano Lett. 10, 2783–2788 (2010)CrossRefGoogle Scholar
  28. 28.
    Park, J.B., Park, H.O.K., Kim, N.J., Yoon, H., Yi, G.C.: Scalable ZnO nanotube arrays grown on CVD-graphene films. APL Mater. 4, 106104 (2016)CrossRefGoogle Scholar
  29. 29.
    Oh, H., Park, J.B., Choi, W., Kim, H., Tchoe, Y., Agrawal, A., Yi, G.C.: Vertical ZnO nanotube transistor on a graphene film for flexible inorganic electronics. Small 2018, 1800240 (2018)CrossRefGoogle Scholar
  30. 30.
    Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., Koo, C.K., Shen, Z., Thong, J.T.L.: Probing layer number and stacking order of few-layer graphene by raman spectroscopy. Small 6, 195–200 (2010)CrossRefGoogle Scholar
  31. 31.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Physics and ElectronicsNorth China University of Water Resources and Electric PowerZhengzhouPeople’s Republic of China

Personalised recommendations