Advertisement

Impact of Size on Humidity Sensing Property of Copper Oxide Nanoparticles

  • Yang Gu
  • Huina Jiang
  • Zi Ye
  • Ning Sun
  • Xuliang Kuang
  • Weijing LiuEmail author
  • Gaofang Li
  • Xiaojun Song
  • Lei ZhangEmail author
  • Wei Bai
  • Xiaodong Tang
Original Article - Nanomaterials
  • 25 Downloads

Abstract

Three sizes of CuO nanosheets were synthesized by hydrothermal method. The structure and morphology of CuO nanosheets were characterized by X-ray diffraction and scanning electron microscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the three humidity sensors, and the sensing properties were then tested. The experimental results show that the sensitivity greatly increases with the decreasing size of CuO nanosheets, the sensitivity of sensor a, b, c are 369%, 3278%, 22,611% in 97.3% RH, respectively. The smaller sized CuO nanomaterials have better response characteristic, the response time of sensor a, b, c under 11.3–97.3% RH are 53 s, 49 s, 32 s, respectively. And correspondingly, hysteresis properties and the repeatability are also a little influenced. In addition, based on complex impedance spectroscopy and multilayer adsorption theory, the impact of size on humidity sensing property was discussed. The results indicated the feasibility to obtain higher performance of humidity sensor, especially the higher sensitivity, via employment the smaller size sensing nanomaterials.

Graphic Abstract

Keywords

Humidity sensor CuO nanosheets Dielectrophoresis Complex impedance spectroscopy Multilayer adsorption theory 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos.61674058, 61604002,), Open Fund of Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University (Grant No. 2019MIP002).

References

  1. 1.
    Hong, S., Shin, J., Hong, Y., Wu, M., Jeong, Y., Jang, D., Jung, G., Bae, J.H., Lee, J.H.: Humidity-sensitive field effect transistor with In(2)O(3) nanoparticles as a sensing layer. J. Nanosci. Nanotechnol. 19, 6656–6662 (2019)CrossRefGoogle Scholar
  2. 2.
    Gupta, S.P., Pawbake, A.S., Sathe, B.R., Late, D.J., Walke, P.S.: Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B Chem. 293, 83–92 (2019)CrossRefGoogle Scholar
  3. 3.
    Lin, C., Zhang, H., Zhang, J., Chen, C.: Enhancement of the humidity sensing performance in Mg-doped hexagonal ZnO microspheres at room temperature. Sens. (Basel) 19, 519 (2019)CrossRefGoogle Scholar
  4. 4.
    Li, H., Zhang, J., Tao, B., Wan, L., Gong, W.: Investigation of capacitive humidity sensing behavior of silicon nanowires. Phys. E 41, 600–604 (2009)CrossRefGoogle Scholar
  5. 5.
    Yeo, T.L., Sun, T., Grattan, K.T.V.: Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A 144, 280–295 (2008)CrossRefGoogle Scholar
  6. 6.
    Shelke, N.T., Karle, S.C., Karche, B.R.: Hydrothermal growth and humidity-dependent electrical properties of molybdenum disulphide nanosheets. J. Nanosci. Nanotechnol. 19, 5158–5166 (2019)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Yu, S., Chen, C., Zhang, J., Liu, J., Li, P.: Effects on structure, surface oxygen defects and humidity performance of Au modified ZnO via hydrothermal method. Appl. Surf. Sci. 486, 482–489 (2019)CrossRefGoogle Scholar
  8. 8.
    Nunes, D., Pimentel, A., Gonçalves, A., Pereira, S., Branquinho, R., Barquinha, P., Fortunato, E., Martins, R.: Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34, 043001 (2019)CrossRefGoogle Scholar
  9. 9.
    Zhu, Y., Wang, Y., Duan, G., Zhang, H., Li, Y., Liu, G., Xu, L., Cai, W.: In situ growth of porous ZnO nanosheet-built network film as high-performance gas sensor. Sens. Actuators B Chem. 221, 350–356 (2015)CrossRefGoogle Scholar
  10. 10.
    Kim, H., Park, S., Park, Y., Choi, D., Yoo, B., Lee, C.S.: Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuators B Chem. 274, 331–337 (2018)CrossRefGoogle Scholar
  11. 11.
    Li, D., Hu, J., Wu, R., Lu, J.G.: Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology 21, 485502 (2010)CrossRefGoogle Scholar
  12. 12.
    Ko, Y.H., Nagaraju, G., Lee, S.H., Yu, J.S.: Facile preparation and optoelectronic properties of CuO nanowires for violet light sensing. Mater. Lett. 117, 217–220 (2014)CrossRefGoogle Scholar
  13. 13.
    Hien, V.X., Minh, V.D., Phuoc, L.H., Vuong, D., Dang, Y.-W., Heo, N.D.Chien: Synthesis of high-density poinsettia-like microstructure of CuO by the hydrothermal method and its ethanol sensing properties. J. Electron. Mater. 46, 3445–3452 (2017)CrossRefGoogle Scholar
  14. 14.
    Umar, A., Alshahrani, A.A., Algarni, H., Kumar, R.: CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B Chem. 250, 24–31 (2017)CrossRefGoogle Scholar
  15. 15.
    Can, N.: Electrospun CuO nanofibers for room temperature volatile organic compound sensing applications. Mater. Chem. Phys. 213, 6–13 (2018)CrossRefGoogle Scholar
  16. 16.
    Li, D., Zu, X., Ao, D., Tang, Q., Fu, Y., Guo, Y., Bilawal, K., Faheem, M.B., Li, L., Li, S., Tang, Y.: High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol–gel CuO films. Sens. Actuators B Chem. 294, 55–61 (2019)CrossRefGoogle Scholar
  17. 17.
    Liu, A., Nie, S., Liu, G., Zhu, H., Zhu, C., Shin, B., Fortunato, E., Martins, R., Shan, F.: In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. J. Mater. Chem. C 5, 2524–2530 (2017)CrossRefGoogle Scholar
  18. 18.
    Ashokan, S., Jayamurugan, P., Ponnuswamy, V.: Effects of CuO and oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. Ser. B 61, 86–97 (2019)CrossRefGoogle Scholar
  19. 19.
    Chani, M.T.S.: Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder. Microchim. Acta 184, 2349–2356 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Xiao, Y., Cui, X., Cheng, P., Wang, B., Gao, Y., Li, X., Yang, T., Zhang, T., Lu, G.: Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6, 3888–3895 (2014)CrossRefGoogle Scholar
  21. 21.
    Wang, S.-B., Hsiao, C.-H., Chang, S.-J., Lam, K.-T., Wen, K.-H., Young, S.-J., Hung, S.-C., Huang, B.-R.: CuO nanowire-based humidity sensor. IEEE Sens. J. 12, 1884–1888 (2012)CrossRefGoogle Scholar
  22. 22.
    Krcmar, P., Kuritka, I., Maslik, J., Urbanek, P., Bazant, P., Machovsky, M., Suly, P., Merka, P.: Fully inkjet-printed CuO sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sens. (Basel) 19, 3068 (2019)CrossRefGoogle Scholar
  23. 23.
    Holzki, M., Fouckhardt, H., Klotzbücher, T.: Evanescent-field fiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis. Sens. Actuators A 184, 93–97 (2012)CrossRefGoogle Scholar
  24. 24.
    Kiasari, N.M., Servati, P.: Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron Device Lett. 32, 982–984 (2011)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Zhang, J.: Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRefGoogle Scholar
  26. 26.
    Kim, W., Choi, M., Yong, K.: Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B Chem. 209, 989–996 (2015)CrossRefGoogle Scholar
  27. 27.
    Agarwal, S., Sharma, G.L.: Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B Chem. 85, 205–211 (2002)CrossRefGoogle Scholar
  28. 28.
    Matsuguchi, M., Umeda, S., Sadaoka, Y., Sakai, Y.: Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B Chem. 49, 179–185 (1998)CrossRefGoogle Scholar
  29. 29.
    Qi, Q., Zhang, T., Wang, S., Zheng, X.: Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B Chem. 137, 649–655 (2009)CrossRefGoogle Scholar
  30. 30.
    Sharma, A., Kumar, Y., Mazumder, K., Rana, A.K., Shirage, P.M.: Controlled Zn1–xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New J. Chem. 42, 8445–8457 (2018)CrossRefGoogle Scholar
  31. 31.
    Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)CrossRefGoogle Scholar
  32. 32.
    Zhao, L.-X., Song, S.-E., Du, N., Hou, W.-G.: A sorbent concentration-dependent Freundlich isotherm. Colloid Polym. Sci. 291, 541–550 (2012)CrossRefGoogle Scholar
  33. 33.
    Xia, L.X., Shen, Z., Vargas, T., Sun, W.J., Ruan, R.M., Xie, Z.D., Qiu, G.Z.: Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol. Lett. 35, 2129–2136 (2013)CrossRefGoogle Scholar
  34. 34.
    Yang, T., Yu, Y.Z., Zhu, L.S., Wu, X., Wang, X.H., Zhang, J.: Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B Chem. 208, 327–333 (2015)CrossRefGoogle Scholar
  35. 35.
    Tomer, V.K., Thangaraj, N., Gahlot, S., Kailasam, K.: Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016)CrossRefGoogle Scholar
  36. 36.
    Passe-Coutrin, N., Altenor, S., Gaspard, S.: Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J. Colloid Interface Sci. 332, 515–519 (2009)CrossRefGoogle Scholar
  37. 37.
    Nounou, M.N., Nounou, H.N.: Multiscale estimation of the Freundlich adsorption isotherm. Int. J. Environ. Sci. Technol. 7, 509–518 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.College of Electronics and Information EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.Shanghai Installation Engineering Group Co., LtdShanghaiChina
  3. 3.Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
  4. 4.Key Laboratory of Polar Materials and DevicesEast China Normal UniversityShanghaiChina

Personalised recommendations