Effect of Structural Control on the Magnetoelectric Characteristics of Piezoelectric–Magnetostrictive Laminate Composite in Resonance and Off-Resonance Modes

  • Kyung-Hoon ChoEmail author
Original Article - Electronics, Magnetics and Photonics


In this study, it is reported that the magnetoelectric (ME) performance in the resonance mode and that in the off-resonance mode are reversed depending on the thickness fraction of the piezoelectric layer in a ME laminate composite composed of piezoelectric and magnetostrictive layers. The ME performance in the resonance mode increased as the thickness fraction of the piezoelectric layer was increased, while the ME performance in the off-resonance mode decreased. Based on the impedance spectrum analysis of fabricated ME laminate samples, it was confirmed that the thickness fraction of the piezoelectric layer had a significant influence on the mechanical loss of the device. The phase angle change and the mechanical quality factor at the anti-resonance frequency of the ME laminate were found to be useful for predicting the ME performance in the resonance mode. High aspect ratio of the laminate was favorable in both resonance and off-resonance modes.

Graphical Abstract


Magnetoelectric Piezoelectric Magnetostriction Composite materials Resonance 



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (Ministry of Education) (NRF-2016R1D1A1B03935024), (NRF-2018R1A6A1A03025761) and the MSIT (Ministry of Science, ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-2014-1-00639) supervised by the IITP (Institute for Information and Communications Technology Promotion).


  1. 1.
    Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  2. 2.
    Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)CrossRefGoogle Scholar
  3. 3.
    Ryu, J., Carazo, A., Uchino, K., Kim, H.: Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948–4951 (2001)CrossRefGoogle Scholar
  4. 4.
    Ma, J., Hu, J., Li, Z., Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  5. 5.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  6. 6.
    Cui, X., Dong, S.: Theoretical analyses on effective magnetoelectric coupling coefficients in piezoelectric/piezomagnetic laminates. J. Appl. Phys. 109, 083903 (2011)CrossRefGoogle Scholar
  7. 7.
    Cho, K.-H., Park, C.-S., Priya, S.: Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminates. Appl. Phys. Lett. 97, 182902 (2010)CrossRefGoogle Scholar
  8. 8.
    Palneedi, H., Na, S.-M., Hwang, G.-T., Peddigari, M., Shin, K.W., Kim, K.H., Ryu, J.: Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe–Ga alloy and Pb(Mg1/3Nb2/3)O3–Pb(Zr, Ti)O3 single crystal. J. Alloys. Compd. 765, 764–770 (2018)CrossRefGoogle Scholar
  9. 9.
    Cho, K.-H., Priya, S.: Direct and converse effect in magnetoelectric laminate composites. Appl. Phys. Lett. 98, 232904 (2011)CrossRefGoogle Scholar
  10. 10.
    Yoo, I.-R., Ahn, C.-W., Cho, K.-H.: 15-Mode piezoelectric composite and its application in a magnetoelectric laminate structure. J. Alloys. Compd. 767, 61–67 (2018)CrossRefGoogle Scholar
  11. 11.
    Bichurin, M.I., Petrov, V.M.: Magnetoelectric effect in magnetostriction-piezoelectric multiferroics. Low Temp. Phys. 36, 544–549 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Y.J., Gray, D., Berry, D., Gao, J.Q., Li, M.H., Li, J.F., Viehland, D.: An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 23, 4111–4114 (2011)CrossRefGoogle Scholar
  13. 13.
    Das, J., Gao, J., Xing, Z., Li, J.F., Viehland, D.: Enhancement in the field sensitivity of magnetoelectric laminate heterostructures. Appl. Phys. Lett. 95, 092501 (2009)CrossRefGoogle Scholar
  14. 14.
    Park, C.-S., Ahn, C.-W., Ryu, J., Yoon, W.-H., Park, D.-S., Kim, H.-E., Priya, S.: Design and characterization of broadband magnetoelectric sensor. J. Appl. Phys. 105, 094111 (2009)CrossRefGoogle Scholar
  15. 15.
    Park, C.-S., Cho, K.-H., Arat, M.A., Evey, J., Priya, S.: High magnetic field sensitivity in Pb(Zr, Ti)O3–Pb(Mg1/3Nb2/3)O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites. J. Appl. Phys. 107, 094109 (2010)CrossRefGoogle Scholar
  16. 16.
    Annapureddy, V., Palneedi, H., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Jeong, D.-Y., Ryu, J.: A pT/√ Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sens. Actuators A Phys. 260, 206–211 (2017)CrossRefGoogle Scholar
  17. 17.
    Annapureddy, V., Kim, M., Palneedi, H., Lee, H.-Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Jeong, D.-Y., Ryu, J.: Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite. Adv. Energy Mater. 6, 1601244 (2016)CrossRefGoogle Scholar
  18. 18.
    Annapureddy, V., Na, S.-M., Hwang, G.-T., Kang, M.G., Sriramdas, R., Palneedi, H., Yoon, W.-H., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Park, D.-S., Choi, J.-J., Jeong, D.-Y., Flatau, A.B., Peddigari, M., Priya, S., Kim, K.-H., Ryu, J.: Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 11, 818–829 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhuang, Y., Ural, S., Uchino, K.: Methodology for characterizing loss factors of piezoelectric ceramics. Ferroelectrics 470, 260–271 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Gray, D., Berry, D., Li, M., Gao, J., Li, J., Viehland, D.: Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J. Alloys Compd. 513, 242–244 (2012)CrossRefGoogle Scholar
  21. 21.
    Cho, K.-H., Yan, Y., Folgar, C., Priya, S.: Zigzag-shaped piezoelectric based high performance magnetoelectric laminate composite. Appl. Phys. Lett. 104, 222901 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKumoh National Institute of TechnologyGumiRepublic of Korea

Personalised recommendations