Electronic Materials Letters

, Volume 15, Issue 4, pp 428–436 | Cite as

Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery

  • Ziqiang Xu
  • Jinchen Chen
  • Mengqiang WuEmail author
  • Cheng Chen
  • Yaochen Song
  • Yuesheng WangEmail author
Original Article - Energy and Sustainability


Hard carbon is deemed to be a most promising anode materials for sodium—ion batteries (SIBs), while, the issues of low capacity and low initial coulombic efficiency still exist limiting the development of SIBs. Although high temperature carbonization of biomass materials under nitrogen or argon atmosphere is a common method for preparation of hard carbon, there are few reports about the effects of different protective atmospheres on propriety of hard carbon. In this article, hornet’s nest (HN) is used to prepare hard carbon under nitrogen and argon. At a suitable carbonization temperature (1200 °C and 1400 °C), the hard carbon under argon possesses lower specific surface area (25–50 cm−3 g−1), but higher initial coulomb efficiency (4–6%) and higher capacity retention (3–6%). Thus, it is inferred that high—performance hard carbon can be obtained under argon atmosphere. Our research about the effect of sintering atmosphere on material properties is expected to provide a reference for the synthetization of hard carbon by high temperature carbonization.

Graphical Abstract


Hard carbon Sodium–ion batteries Nitrogen and argon Suitable carbonization temperature 



This work was financially supported by Sichuan Science and Technology Program (2017HH0067, 2018GZ0006 and 2018GZ0134).

Author’s Contribution

Y. Wang Z. Xu, and M. Wu designed the experiment. J. Chen, C. Chen, Y. Song, Z. Chen, and J. Liu prepared HN. J. Chen performed all electrochemical characterization. J. Chen, C. Chen, Y. Song, Z. Xu, M. Wu, and Y. Wang carried out and analyzed materials characterization and electrochemical measurements. J. Chen, Z. Xu, and Y. Wang wrote this paper. The manuscript was written through contributions of all authors.

Compliance with Ethical Standards

Conflict of interest

All authors declare no competing financial interest.

Supplementary material

13391_2019_143_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2187 kb)


  1. 1.
    Tarascon, J.-M.: Is lithium the new gold? Nat. Chem. 2(6), 510 (2010)CrossRefGoogle Scholar
  2. 2.
    Jayaraman, S., Jain, A., Ulaganathan, M., Edison, E., Srinivasan, M.P., Balasubramanian, R., Aravindan, V., Madhavi, S.: Li-ion versus Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chem. Eng. J. 316, 506–513 (2017)CrossRefGoogle Scholar
  3. 3.
    Pan, H., Hu, Y.-S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338 (2013)CrossRefGoogle Scholar
  4. 4.
    Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., Komaba, S.: Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 16(29), 15007–15028 (2014)CrossRefGoogle Scholar
  5. 5.
    Delmas, C.: Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8(17), 1703137 (2018)CrossRefGoogle Scholar
  6. 6.
    Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhao, J.B., Li, X., Xiao, Q.: Fast solution combustion synthesis of porous NaFeTi 3 O 8 with superior sodium storage properties. Electron. Mater. Lett. 14(1), 1–7 (2017)Google Scholar
  8. 8.
    Song, Y., Liao, J., Chen, C., Yang, J., Chen, J., Gong, F., Wang, S., Xu, Z., Wu, M.: Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphenedoping for lithium and sodium ion batteries. Carbon. 142, 697–706 (2018)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., Huang, X.: A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4(1), 2365 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Mu, L., Liu, J., Yang, Z., Yu, X., Gu, L., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., Huang, X.: A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Liu, J., Lee, B., Qiao, R., Yang, Z., Xu, S., Yu, X., Gu, L., Hu, Y.S., Yang, W., Kang, K., Li, H., Yang, X.Q., Chen, L., Huang, X.: Ti-substituted tunnel-type Na(0).(4)(4)MnO(2) as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Xiao, R., Hu, Y.S., Avdeev, M., Chen, L.: P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015)CrossRefGoogle Scholar
  13. 13.
    Barpanda, P., Oyama, G., Nishimura, S., Chung, S.C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)CrossRefGoogle Scholar
  14. 14.
    Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., Chen, L.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)CrossRefGoogle Scholar
  15. 15.
    Xu, Z., Wu, M., Chen, Z., Chen, C., Yang, J., Feng, T., Paek, E., Mitlin, D.: Direct structure - performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 1802272 (2019)Google Scholar
  16. 16.
    Xiao, L., Lu, H., Fang, Y., Sushko, M.L., Cao, Y., Ai, X., Yang, H., Liu, J.: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018)CrossRefGoogle Scholar
  17. 17.
    Luo, W., Schardt, J., Bommier, C., Wang, B., Razink, J., Simonsen, J., Ji, X.: Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1(36), 10662 (2013)CrossRefGoogle Scholar
  18. 18.
    Zheng, Y., Wang, Y., Lu, Y., Hu, Y.-S., Li, J.: A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39, 489–498 (2017)CrossRefGoogle Scholar
  19. 19.
    Chen, C., Wu, M., Xu, Z., Feng, F., Yang, J., Chen, Z., Wang, S., Wang, Y.: Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J. Colloid Interf. Sci. 538(7), 267–276 (2019)CrossRefGoogle Scholar
  20. 20.
    Darwiche, A., Toiron, M., Sougrati, M.T., Fraisse, B., Stievano, L., Monconduit, L.: Performance and mechanism of FeSb 2 as negative electrode for Na-ion batteries. J. Power Sources 280, 588–592 (2015)CrossRefGoogle Scholar
  21. 21.
    Kong, F., Lv, L., Gu, Y., Tao, S., Jiang, X., Qian, B., Gao, L.: Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. J. Mater. Sci. 54, 4225–4235 (2018)CrossRefGoogle Scholar
  22. 22.
    Yuan, S., Huang, X-l, Ma, D-l, Wang, H-g, Meng, F-z, Zhang, X-b: Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26(14), 2273–2279 (2014)CrossRefGoogle Scholar
  23. 23.
    Gong, F., Xia, D., Bi, C., Yang, J., Zeng, W., Chen, C., Ding, Y., Xu, Z., Liao, J., Wu, M.: Systematic comparison of hollow and solid Co 3V 2 O 8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochim. Acta 264, 358–366 (2018)CrossRefGoogle Scholar
  24. 24.
    Wang, S., Gong, F., Yang, S., Liao, J., Wu, M., Xu, Z., Chen, C., Yang, X., Zhao, F., Wang, B., Wang, Y., Sun, X.: Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018)CrossRefGoogle Scholar
  25. 25.
    Gong, F., Ding, Z., Fang, Y., Tong, C.J., Xia, D., Lv, Y., Wang, B., Papavassiliou, D.V., Liao, J., Wu, M.: Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: insights from multiscale modeling. ACS Appl. Mater. Interfaces. 10(17), 14614–14621 (2018)CrossRefGoogle Scholar
  26. 26.
    Liu, P., Li, Y., Hu, Y.-S., Li, H., Chen, L., Huang, X.: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 4(34), 13046–13052 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces. 9(1), 391–397 (2016)CrossRefGoogle Scholar
  28. 28.
    Chen, C., Wu, M., Wang, S., Yang, J., Qin, J., Peng, Z., Feng, T., Gong, F.: An: In situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Adv. 7(61), 38639–38646 (2017)CrossRefGoogle Scholar
  29. 29.
    Asher, R.C.: A lamellar compound of sodium and graphite. J. Inorg. Nucl. Chem. 10(3), 238–249 (1959)CrossRefGoogle Scholar
  30. 30.
    Stevens, D.A., Dahn, J.R.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001)CrossRefGoogle Scholar
  31. 31.
    Hasa, I., Dou, X., Buchholz, D., Yang, S.H., Hassoun, J., Passerini, S., Scrosati, B.: A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 310, 26–31 (2016)CrossRefGoogle Scholar
  32. 32.
    Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. 53(38), 10169–10173 (2014)CrossRefGoogle Scholar
  33. 33.
    Kim, H., Hong, J., Park, Y.-U., Kim, J., Hwang, I., Kang, K.: Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25(4), 534–541 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhou, X., Guo, Y.-G.: Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1(1), 83–86 (2014)CrossRefGoogle Scholar
  35. 35.
    Wang, Q., Zhao, C., Lu, Y., Li, Y., Zheng, Y., Qi, Y., Rong, X., Jiang, L., Qi, X., Shao, Y., Pan, D., Li, B., Hu, Y.S., Chen, L.: Advanced nanostructured anode materials for sodium-ion batteries. Small 13(42), 1701835 (2017)CrossRefGoogle Scholar
  36. 36.
    Wang, J., Nie, P., Ding, B., Dong, S., Hao, X., Dou, H., Zhang, X.: Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5(6), 2411–2428 (2017)CrossRefGoogle Scholar
  37. 37.
    Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R., Seefeldt, L.C.: Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114(8), 4041–4062 (2014)CrossRefGoogle Scholar
  38. 38.
    Kim, H.T., Shin, H., Jeon, I.Y., Yousaf, M., Baik, J., Cheong, H.W., Park, N., Baek, J.B., Kwon, T.H.: Carbon-heteroatom bond formation by an ultrasonic chemical reaction for energy storage systems. Adv. Mater. 29(47), 1702747 (2017)CrossRefGoogle Scholar
  39. 39.
    Yu, P., Schaffer, G.B.: Microstructural evolution during pressureless infiltration of aluminium alloy parts fabricated by selective laser sintering. Acta Mater. 57(1), 163–170 (2009)CrossRefGoogle Scholar
  40. 40.
    Fey, T.K., Kao, Y.C.: Synthesis and characterization of pyrolyzed sugar carbons under nitrogen or argon atmospheres as anode materials for lithium-ion batteries. Mater. Chem. Phys. 73(1), 37–46 (2002)CrossRefGoogle Scholar
  41. 41.
    Berger, L.M., Gruner, W.: Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide. Int. J. Refract Metal Hard Mater. 20(3), 235–251 (2002)CrossRefGoogle Scholar
  42. 42.
    Xiao, P., Liu, D., Garcia, B.B., Sepehri, S., Zhang, Y., Cao, G.: Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators B: Chem. 134(2), 367–372 (2008)CrossRefGoogle Scholar
  43. 43.
    Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C.: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)CrossRefGoogle Scholar
  44. 44.
    Cao, B., Liu, H., Xu, B., Lei, Y., Chen, X., Song, H.: Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4(17), 6472–6478 (2016)CrossRefGoogle Scholar
  45. 45.
    Qiu, S., Xiao, L., Sushko, M.L., Han, K.S., Shao, Y., Yan, M., Liang, X., Mai, L., Feng, J., Cao, Y., Ai, X., Yang, H., Liu, J.: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017)CrossRefGoogle Scholar
  46. 46.
    Yang, T., Qian, T., Wang, M., Shen, X., Xu, N., Sun, Z., Yan, C.: A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 28(3), 539–545 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, H., Jia, M., Yue, S., Cao, B., Zhu, Q., Sun, N., Xu, B.: Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J. Mater. Chem. A 5(20), 9572–9579 (2017)CrossRefGoogle Scholar
  48. 48.
    Bommier, C., Surta, T.W., Dolgos, M., Ji, X.: New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015)CrossRefGoogle Scholar
  49. 49.
    Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 9(1), 391–397 (2017)CrossRefGoogle Scholar
  50. 50.
    Cao, Y., Xiao, L., Sushko, M.L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z., Saraf, L.V., Yang, Z., Liu, J.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012)CrossRefGoogle Scholar
  51. 51.
    Memarzadeh Lotfabad, E., Kalisvaart, P., Kohandehghan, A., Karpuzov, D., Mitlin, D.: Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2(46), 19685–19695 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Center of Excellence in Transportation Electrification and Energy Storage, Hydro QuébecVarennesCanada

Personalised recommendations