Advertisement

Solution-Processed Hybrid Ambipolar Thin-Film Transistors Fabricated at Low Temperature

  • Jun-Young Jeon
  • Byoung-Soo Yu
  • Yong-Hoon Kim
  • Tae-Jun HaEmail author
Original Article - Electronics, Magnetics and Photonics
  • 23 Downloads

Abstract

We demonstrate solution-processed hybrid ambipolar thin-film transistors (TFTs) employing a stack structure composed of indium–gallium–zinc-oxide (IGZO) and single-wall carbon nanotube (SWCNT) as an active channel fabricated at low temperature. With an optimized deep-ultraviolet (DUV) photo annealing process for sol–gel based IGZO thin film on SWCNT random networks, the ambipolar transport of both electrons and holes with good electrical characteristics was realized. We also investigate the effect of DUV photo annealing on the material characteristics of solution-processed hybrid stack films and on the device performance of solution-processed hybrid ambipolar TFTs compared to those of samples thermally annealed at 500 °C, which is required for solution-processed high-quality IGZO thin films. The Raman spectra show that DUV photo annealing ensures hole transport in SWCNT random networks of a hybrid stack film, where the intensity of the 2D peak to the G peak was not changed compared to that of pristine SWCNT random networks. We believe that these analytical investigations reveal that DUV photo annealing is a promising method by which to realize hybrid ambipolar SWCNT/IGZO TFTs fabricated at low temperature.

Graphical Abstract

Keywords

Hybrid ambipolar TFTs SWCNTs IGZO Solution process Deep ultraviolet photo annealing 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2003808).

References

  1. 1.
    Li, Y., Yang, J., Wang, Y., Ma, P., Yuan, Y., Zhang, J., Lin, Z., Zhou, L., Xin, Q., Song, A.: IEEE Electr. Device Lett. 39, 208 (2018)CrossRefGoogle Scholar
  2. 2.
    Luo, H., Liang, L., Cao, H., Dai, M., Lu, Y., Wang, M.: ACS Appl. Mater. Interfaces 7, 17023 (2015)CrossRefGoogle Scholar
  3. 3.
    Yu, M., Wan, H., Cai, L., Miao, J., Zhang, S., Wang, C.: ACS Nano 12, 11572 (2018)CrossRefGoogle Scholar
  4. 4.
    Xu, X., Xiao, T., Gu, X., Yang, X., Kershaw, S.V., Zhao, N., Xu, J., Miao, Q.: ACS Appl. Mater. Interfaces 7, 28019 (2015)CrossRefGoogle Scholar
  5. 5.
    Yang, C., Kwack, Y., Kim, S.H., An, T.K., Hong, K., Nam, S., Park, M., Choi, W.-S., Park, C.E.: Org. Electron. 12, 411 (2011)CrossRefGoogle Scholar
  6. 6.
    Liu, P.-T., Chou, Y.-T., Teng, L.-F., Fuh, C.-S.: Appl. Phys. Lett. 97, 083505 (2010)CrossRefGoogle Scholar
  7. 7.
    Ha, T.-J., Dodabalapur, A.: Appl. Phys. Lett. 102, 123506 (2013)CrossRefGoogle Scholar
  8. 8.
    Cao, X., Cao, Y., Zhou, C.: ACS Nano 10, 199 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, C., Liu, X., Minari, T., Kanehara, M., Noh, Y.-Y.: J. Inf. Disp. 19, 71 (2018)CrossRefGoogle Scholar
  10. 10.
    Ding, X., Huang, F., Li, S., Zhang, J., Jiang, X., Zhang, Z.: Electron. Mater. Lett. 13, 45 (2017)CrossRefGoogle Scholar
  11. 11.
    Kim, B., Liang, K., Geier, M.L., Hersam, M.C., Dodabalapur, A.: Appl. Phys. Lett. 109, 023515 (2016)CrossRefGoogle Scholar
  12. 12.
    Ha, T.-J., Chen, K., Chuang, S., Yu, K.M., Kiriya, D., Javey, A.: Nano Lett. 15, 392 (2015)CrossRefGoogle Scholar
  13. 13.
    Luo, H., Liang, L.Y., Liu, Q., Cao, H.T.: ECS J. Solid State Sci. 3, Q3091 (2014)CrossRefGoogle Scholar
  14. 14.
    Kim, W.-G., Tak, Y.J., Kim, H.J.: J. Inf. Disp. 19, 39 (2018)CrossRefGoogle Scholar
  15. 15.
    Kim, Y.-H., Heo, J.-S., Kim, T.-H., Park, S., Yoon, M.-H., Kim, J., Oh, M.S., Yi, G.-R., Noh, Y.-Y., Park, S.K.: Nature 489, 128 (2012)CrossRefGoogle Scholar
  16. 16.
    Ha, T.-J., Kiriya, D., Chen, K., Javey, A.: ACS Appl. Mater. Interfaces 6, 8441 (2014)CrossRefGoogle Scholar
  17. 17.
    Gong, Y., Liu, Q., Wilt, J.S., Gong, M., Ren, S., Wu, J.: Sci. Rep. 5, 11328 (2015)CrossRefGoogle Scholar
  18. 18.
    Heo, J.-S., Kim, J.-H., Kim, J., Kim, M.-G., Kim, Y.-H., Park, S.K.: IEEE Electr. Device Lett. 36, 162 (2015)CrossRefGoogle Scholar
  19. 19.
    Hwang, S., Lee, J.H., Woo, C.H., Lee, J.Y., Cho, H.K.: Thin Solid Films 519, 5146 (2011)CrossRefGoogle Scholar
  20. 20.
    Ning, H., Zeng, Y., Zheng, Z., Zhang, H., Fang, Z., Yao, R., Hu, S., Li, X., Peng, J., Xie, W., Lu, X.: IEEE Trans. Electron Dev. 65, 537 (2018)CrossRefGoogle Scholar
  21. 21.
    Kim, S.-N., Son, W.-J., Choi, J.-S., Ahn, W.-S.: Microporous Mesoporous Mater. 115, 497 (2008)CrossRefGoogle Scholar
  22. 22.
    Huang, H.-Y., Wang, S.-J., Wu, C.-H., Lu, C.-Y.: Electron. Mater. Lett. 10, 899 (2014)CrossRefGoogle Scholar
  23. 23.
    Kim, G.H., Jeong, W.H., Kim, H.J.: Phys. Status Solidi A 207, 1677 (2010)CrossRefGoogle Scholar
  24. 24.
    Kim, S.J., Kim, G.H., Kim, D.L., Kim, D.N., Kim, H.J.: Phys. Status Solidi A 207, 1668 (2010)CrossRefGoogle Scholar
  25. 25.
    Pu, H., Zhou, Q., Yue, L., Zhang, Q.: Appl. Surf. Sci. 283, 722 (2013)CrossRefGoogle Scholar
  26. 26.
    Lim, J.H., Shim, J.H., Choi, J.H., Joo, J., Park, K., Jeon, H., Moon, M.R., Jung, D., Kim, H., Lee, H.-J.: Appl. Phys. Lett. 95, 012108 (2009)CrossRefGoogle Scholar
  27. 27.
    Kim, M.J., Heo, Y.M., Cho, J.H.: Org. Electron. 43, 41 (2017)CrossRefGoogle Scholar
  28. 28.
    Sanctis, S., Hoffmann, R.C., Koslowski, N., Foro, S., Bruns, M., Schneider, J.J.: Chem. A Asian J. 13, 3912 (2018)CrossRefGoogle Scholar
  29. 29.
    Kusaka, Y., Shirakawa, N., Ogura, S., Leppaniemi, J., Sneck, A., Alastalo, A., Ushijima, H., Fukuda, N.: ACS Appl. Mater. Interfaces 10, 24339 (2018)CrossRefGoogle Scholar
  30. 30.
    Kwon, H.-J., Jang, J., Kim, S., Subramanian, V., Grigoropoulos, C.P.: Appl. Phys. Lett. 105, 152105 (2014)CrossRefGoogle Scholar
  31. 31.
    Im, H., Kim, T., Song, H., Choi, J., Park, J.S., Ovalle-Robles, R., Yang, H.D., Kihm, K.D., Baughman, R.H., Lee, H.H., Kang, T.J., Kim, Y.H.: Nat. Commun. 7, 10600 (2016)CrossRefGoogle Scholar
  32. 32.
    Jo, J.-W., Kim, K.-T., Facchetti, A., Kim, M.-G., Park, S.K.: IEEE Electr. Device Lett. 39, 1668 (2018)CrossRefGoogle Scholar
  33. 33.
    Pennetreau, F., Riant, O., Hermans, S.: Chem. Eur. J. 20, 15009 (2014)CrossRefGoogle Scholar
  34. 34.
    Li, M., Wang, J., Cai, X., Liu, F., Li, X., Wang, L., Liao, L., Jiang, C.: Adv. Electron. Mater. 4, 1800211 (2018)CrossRefGoogle Scholar
  35. 35.
    Kim, B., Jang, S., Geier, M.L., Prabhumirashi, P.L., Hersam, M.C., Dodabalapur, A.: Appl. Phys. Lett. 104, 062101 (2014)CrossRefGoogle Scholar
  36. 36.
    Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Appl. Phys. Lett. 75, 3129 (1999)CrossRefGoogle Scholar
  37. 37.
    Goto, T., Sugawa, S., Ohmi, T.: J. Soc. Inf. Disp. 21, 517 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea
  2. 2.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations