Advertisement

Quantitative Analysis on Cellular Uptake of Clustered Ferrite Magnetic Nanoparticles

  • Yu Jin Kim
  • Bum Chul Park
  • Young Soo Choi
  • Min Jun Ko
  • Young Keun KimEmail author
Original Article - Nanomaterials
  • 17 Downloads

Abstract

Due to their ability to be internalized into cells by endocytosis through cell membranes, the application of nanoparticles in therapeutic and diagnostic fields has received much interest. In particular, ferrite magnetic nanoparticles (MNPs) are widely used as reagents for medical care, including in vitro magnetic separation, T2-weighted magnetic resonance imaging, magnetic hyperthermia therapy, and as drug delivery systems. However, little is known about the quantitative analysis of the cellular uptake of MNPs by the interaction of particle surfaces with biomolecules. Here, we quantitatively analyze the intracellular uptakes of 30 nm Fe- and Mn-ferrite MNPs. We confirm that the magnetic properties of MNPs change according to their microstructure and quantitatively analyze nanoparticle internalization in breast cell lines (MCF10A, MCF7, and MDA-MB-231) by measuring the magnetic moment using a vibrating sample magnetometer. Finally, we examine the effect of nanoparticle microstructure on cellular uptake in terms of the interaction between the nanoparticles and biomolecules.

Graphical Abstract

Keywords

Magnetic nanoparticle Ferrite Biomolecule Cellular uptake Quantitative analysis 

Notes

Acknowledgements

This work was supported through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2014M3A7B4052193, 2019R1A2C3006587), and by the Ministry of Trade, Industry and Energy of Korea under Industrial Technology Innovation Program (10080408). Y.J.K. received financial support from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2017R1D1A1B03036100).

References

  1. 1.
    Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889 (2008)CrossRefGoogle Scholar
  2. 2.
    Park, S., Aalipour, A., Vermesh, O., Yu, J.H., Gambhir, S.S.: Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017)CrossRefGoogle Scholar
  3. 3.
    Park, B.C., Kim, H.-D., Park, J., Kim, Y.J., Kim, Y.K.: Photonic reactions leading to fluorescence in a polymeric system induced by the photothermal effect of magnetite nanoparticles using a 780-nm multiphoton laser. Small 13, 1700897 (2017)CrossRefGoogle Scholar
  4. 4.
    Yoon, H.Y., Lee, J.S., Min, J.H., Wu, J.H., Kim, Y.K.: Synthesis, microstructure, and magnetic properties of monosized MnxZnyFe3−x−yO4 ferrite nanocrystals. Nanoscale Res. Lett. 8, 530 (2013)CrossRefGoogle Scholar
  5. 5.
    Choi, Y.S., Choi, Y.S., Yoon, H.Y., Lee, J.S., Wu, J.H., Kim, Y.K.: Synthesis and magnetic properties of size-tunable MnxFe3−xO4 ferrite nanoclusters. J. Appl. Phys. 115, 17B517 (2014)CrossRefGoogle Scholar
  6. 6.
    Lee, J.S., Cha, J.M., Yoon, H.Y., Lee, J., Kim, Y.K.: Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. 5, 1 (2015)Google Scholar
  7. 7.
    Xu, X., Hong, Y.-K., Park, J., Lee, W., Lane, A.M.: Exchange coupled SrFe12O19/Fe–Co core/shell particles with different shell thickness. Electron. Mater. Lett. 11, 1021 (2015)CrossRefGoogle Scholar
  8. 8.
    Liu, H., Wu, J., Min, J.H., Lee, J.H., Kim, Y.K.: Synthesis and characterization of magnetic–luminescent Fe3O4–CdSe core–shell nanocrystals. Electron. Mater. Lett. 15, 102 (2019)CrossRefGoogle Scholar
  9. 9.
    Revia, R.A., Zhang, M.: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater. Today 19, 157 (2016)CrossRefGoogle Scholar
  10. 10.
    Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012)CrossRefGoogle Scholar
  11. 11.
    Walczyk, D., Bombelli, F.B., Monopoli, M.P.: What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010)CrossRefGoogle Scholar
  12. 12.
    Yan, Y., Gause, K.T., Kamphuis, M.M.J., Ang, C., O’Brien-Simpson, N.M., Lenzo, J.C., Reynolds, E.C., Nice, E.C., Caruso, F.: Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7, 10960–10970 (2013)CrossRefGoogle Scholar
  13. 13.
    Lundqvist, M., Stigler, J., Cedervall, T., Berggard, T., Flanagan, M.B., Lynch, I., Elia, G., Dawson, K.A.: The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011)CrossRefGoogle Scholar
  14. 14.
    Lynch, I., Dawson, K.A.: Protein–nanoparticle interactions. Nano Today 3, 40–47 (2008)CrossRefGoogle Scholar
  15. 15.
    Shang, L., Nienhaus, G.U.: Small fluorescent nanoparticles at the nano–bio interface. Mater. Today 16, 58–66 (2013)CrossRefGoogle Scholar
  16. 16.
    Gebauer, J.S., Malissek, M., Simon, S., Knauer, S.K., Maskos, M., Stauber, R.H., Peukert, W., Treuel, L.: Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679 (2012)CrossRefGoogle Scholar
  17. 17.
    Oh, J.Y., Kim, H.S., Palanikumar, L., Go, E.G., Jana, B., Park, S.A., Kim, H.Y., Kim, K., Seo, J.K., Kwak, S.K., Kim, C., Kang, S., Ryu, J.: Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 9, 4548 (2018)CrossRefGoogle Scholar
  18. 18.
    Mahmoudi, M., Abdelmonem, A.M., Behzadi, S., Clement, J.H., Dutz, S., Ejtehadi, M.R., Hartmann, R., Kantner, K., Linne, U., Maffre, P., Metzler, S., Moghadam, M.K., Pfeiffer, C., Rezaei, M., Ruiz-Lozano, P., Serpooshan, V., Shokrgozar, M.A., Nienhaus, G.U., Parak, W.J.: Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7, 6555–6562 (2013)CrossRefGoogle Scholar
  19. 19.
    Gao, J., Xu, B.: Applications of nanomaterials inside cells. Nano Today 4, 37–51 (2009)CrossRefGoogle Scholar
  20. 20.
    Bae, J., Huh, M., Ryu, B., Do, J., Jin, S., Moon, M., Jung, J., Chang, Y., Kim, E., Chi, S., Lee, G., Chae, K.: The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials 32, 9401–9414 (2011)CrossRefGoogle Scholar
  21. 21.
    Kim, H., Jo, A., Baek, S., Lim, D., Park, S.-Y., Cho, S.K., Chung, J.W., Yoon, J.: Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid conjugated hydrogels containing magnetite nanoparticles. Sci. Rep. 7, 41090 (2017)CrossRefGoogle Scholar
  22. 22.
    Huang, C.-Y., Ger, T.-R., Wei, Z.-H., Lai, M.-F.: Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level. PLoS ONE 9, e96550 (2014)CrossRefGoogle Scholar
  23. 23.
    Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)CrossRefGoogle Scholar
  24. 24.
    Liu, G., Gao, J., Ai, H., Chen, X.: Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9, 1533–1545 (2013)CrossRefGoogle Scholar
  25. 25.
    Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P.: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)CrossRefGoogle Scholar
  26. 26.
    Huang, J., Bu, L., Xie, J., Chen, K., Cheng, Z., Li, X., Chen, X.: Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010)CrossRefGoogle Scholar
  27. 27.
    Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., Shin, K., Lee, Y., Kwon, S.G., Na, H.B., Park, J.-G., Ahn, T.-Y., Kim, Y.-W., Moon, W.K., Choi, S.H., Hyeon, T.: Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 4, 7151–7160 (2010)Google Scholar
  28. 28.
    Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105, 14265–14270 (2008)CrossRefGoogle Scholar
  29. 29.
    El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005)CrossRefGoogle Scholar
  30. 30.
    Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010)CrossRefGoogle Scholar
  31. 31.
    Cho, E.C., Au, L., Zhang, Q., Xia, Y.: The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6, 517–522 (2010)CrossRefGoogle Scholar
  32. 32.
    Cho, E.C., Zhang, Q., Xia, Y.: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6, 385–391 (2011)CrossRefGoogle Scholar
  33. 33.
    Xia, X.-R., Monteiro-Riviere, N.A., Riviere, J.E.: An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 5, 671–675 (2010)CrossRefGoogle Scholar
  34. 34.
    Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437 (2009)CrossRefGoogle Scholar
  35. 35.
    Cheng, X., Tian, X., Wu, A., Li, J., Tian, J., Chong, Y., Chai, Z., Zhao, Y., Chen, C., Ge, C.: Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl. Mater. Interfaces 7, 20568–20575 (2015)CrossRefGoogle Scholar
  36. 36.
    Holzapfel, V., Lorenz, M., Weiss, C.K., Schrezenmeier, H., Landfester, K., Mailänder, V.: Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. J. Phys. Condens. Matter 18, 2581–2594 (2006)CrossRefGoogle Scholar
  37. 37.
    Giljohann, D.A., Seferos, D.S., Patel, P.C., Millstone, J.E., Rosi, N.L., Mirkin, C.A.: Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 7(12), 3818–3821 (2007)CrossRefGoogle Scholar
  38. 38.
    Kim, Y.J., Ryou, S.-M., Kim, S., Yeom, J.-H., Han, M.S., Lee, K., Seong, M.: Enhanced protein-mediated binding between oligonucleotide–gold nanoparticle composites and cell surfaces: co-transport of proteins and composites. J. Mater. Chem. 22, 25036 (2012)CrossRefGoogle Scholar
  39. 39.
    Schrade, A., Mailänder, V., Ritz, S., Landfester, K., Ziener, U.: Surface roughness and charge influence the uptake of nanoparticles: fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Macromol. Biosci. 12, 1459–1471 (2012)CrossRefGoogle Scholar
  40. 40.
    Niu, Y., Yu, M., Zhang, J., Yang, Y., Xu, C., Yeh, M., Taran, E., Hou, J.J.C., Gray, P.P., Yu, C.: Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, 8477 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Research Center for Biomedical NanocrystalsKorea UniversitySeoulKorea
  2. 2.Research Institute of Engineering and TechnologyKorea UniversitySeoulKorea
  3. 3.Department of Biomicrosystem TechnologyKorea UniversitySeoulKorea
  4. 4.Department of Materials Science and EngineeringKorea UniversitySeoulKorea

Personalised recommendations