Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries

  • Duri Kim
  • Ji Heon RyuEmail author
Original Article - Energy and Sustainability


Amorphous vanadium pentoxide (a-V2O5) was prepared via the precipitation method, for use as a positive-electrode material in magnesium rechargeable batteries (MRBs). Amorphous metal oxides can be good candidates as the host materials for the Mg divalent ion because of many vacancies and huge void spaces. Furthermore, amorphous metal oxides generally do not experience a phase change during cycles. The electrochemical characteristics of the a-V2O5 and c-V2O5 (crystalline vanadium pentoxide) were evaluated and compared. Both a-V2O5 and c-V2O5 can store over 150 mAh/g of the Li+ ion in activated carbon (AC)/V2O5 cells, however, Mg2+ ion cannot be stored in both a-V2O5 and c-V2O5 in the first cycle. But, the specific capacity of a-V2O5 gradually increases up to 180 mAh/g after the 10th cycle, whereas c-V2O5 cannot react continuously. Therefore, the a-V2O5, which has a large specific capacity and high reaction voltage, can be a good candidate as a host material for MRBs because its amorphous structure has the advantage of the multi-valent ion storage.

Graphical Abstract


Vanadium pentoxide Amorphous Precipitation Magnesium rechargeable batteries 



This research was supported by Korea Electric Power Corporation (Grant number: R18XA06-07).


  1. 1.
    Besenhard, J.O., Winter, M.: Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3, 155 (2002)CrossRefGoogle Scholar
  2. 2.
    Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle Scholar
  3. 3.
    Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., Aurbach, D.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013)CrossRefGoogle Scholar
  4. 4.
    Liebenow, C.: Reversibility of electrochemical magnesium deposition from Grignard solutions. J. Appl. Electrochem. 27, 221 (1997)CrossRefGoogle Scholar
  5. 5.
    Mohtadi, R., Mizuno, F.: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014)CrossRefGoogle Scholar
  6. 6.
    Muldoon, J., Bucur, C.B., Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014)CrossRefGoogle Scholar
  7. 7.
    Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000)CrossRefGoogle Scholar
  8. 8.
    Tang, H., Peng, Z., Wu, L., Xiong, F., Pei, C., An, Q., Mai, L.: Vanadium-Based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem. Energy Rev. 1, 169 (2018)CrossRefGoogle Scholar
  9. 9.
    Su, S., Huang, Z., NuLi, Y., Tuerxun, F., Yang, J., Wang, J.: A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51, 2641 (2015)CrossRefGoogle Scholar
  10. 10.
    Gershinsky, G., Yoo, H.D., Gofer, Y., Aurbach, D.: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964 (2013)CrossRefGoogle Scholar
  11. 11.
    Arthur, T.S., Kato, K., Germain, J., Guo, J., Glans, P.-A., Liu, Y.-S., Holmes, D., Fan, X., Mizuno, F.: Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 51, 15657 (2015)CrossRefGoogle Scholar
  12. 12.
    Chae, O.B., Kim, J., Park, I., Jeong, H., Ku, J.H., Ryu, J.H., Kang, K., Oh, S.M.: Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 26, 5874 (2014)CrossRefGoogle Scholar
  13. 13.
    Ku, J.H., Ryu, J.H., Kim, S.H., Han, O.H., Oh, S.M.: Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv. Funct. Mater. 22, 3658 (2012)CrossRefGoogle Scholar
  14. 14.
    Jang, J., Kim, S.-M., Kim, Y., Park, K.H., Ku, J.H., Ryu, J.H., Oh, S.M.: Electrode performances of amorphous molybdenum oxides of different molybdenum valence for lithium-ion batteries. Isr. J. Chem. 55, 604 (2015)CrossRefGoogle Scholar
  15. 15.
    Kim, T.A., Kim, J.H., Kim, M.G., Oh, S.M.: Li+ storage sites in amorphous V2O5 prepared by precipitation method. J. Electrochem. Soc. 150, A985 (2003)CrossRefGoogle Scholar
  16. 16.
    Kim, D.-M., Kim, Y., Arumugam, D., Woo, S.W., Jo, Y.N., Park, M.-S., Kim, Y.-J., Choi, N.-S., Lee, K.T.: Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl. Mater. Interfaces. 8, 8554 (2016)CrossRefGoogle Scholar
  17. 17.
    Tepavcevic, S., Liu, Y., Zhou, D., Lai, B., Maser, J., Zuo, X., Chan, H., Král, P., Johnson, C.S., Stamenkovic, V., Markovic, N.M., Rajh, T.: Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194 (2015)CrossRefGoogle Scholar
  18. 18.
    Jiao, L.-F., Yuan, H.-T., Si, Y.-C., Wang, Y.-J., Wang, Y.-M.: Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries. Electrochem. Commun. 8, 1041 (2006)CrossRefGoogle Scholar
  19. 19.
    Huang, Z.-D., Masese, T., Orikasa, Y., Mori, T., Minato, T., Tassel, C., Kobayashi, Y., Kageyama, H., Uchimoto, Y.: MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A 2, 11578 (2014)CrossRefGoogle Scholar
  20. 20.
    Liang, Y., Yoo, H.D., Li, Y., Shuai, J., Calderon, H.A., Hernandez, F.C.R., Grabow, L.C., Yao, Y.: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194 (2015)CrossRefGoogle Scholar
  21. 21.
    He, D., Wu, D., Gao, J., Wu, X., Zeng, X., Ding, W.: Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J. Power Sources 294, 643 (2015)CrossRefGoogle Scholar
  22. 22.
    Liu, B., Luo, T., Mu, G., Wang, X., Chen, D., Shen, G.: Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7, 8051 (2013)CrossRefGoogle Scholar
  23. 23.
    Sun, X., Bonnick, P., Duffort, V., Liu, M., Rong, Z., Persson, K.A., Ceder, G., Nazar, L.F.: A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Graduate School of Knowledge-based Technology and EnergyKorea Polytechnic UniversitySiheung-siRepublic of Korea

Personalised recommendations