Advertisement

The Improved Performance of Molybdenum Disulphide Thin-Film Transistors Operating at Low Voltages by Solution-Processed Fluorocarbon Encapsulation

  • Byeong-Cheol Kang
  • Tae-Jun HaEmail author
Original Article - Electronics, Magnetics and Photonics
  • 16 Downloads

Abstract

We demonstrate a simple and reproducible method of solution-processed fluorocarbon encapsulation which significantly improves the device performance of molybdenum disulphide (MoS2) thin-film transistors (TFTs) operating at low voltages. Using such encapsulation, the key factors of the device, such as field-effect mobility, sub-threshold swing and device-to-device uniformity were improved. This achievement is presumed to stem from the screening effect of fluorocarbon, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) which possesses a chemical structure with polarizable interactions of carbon–fluorine (C–F) bonds in the end groups, on the scattering of charge impurities in MoS2 TFTs. We also investigate the Raman spectra to verify the effects of solution-processed fluorocarbon encapsulation on the structure of MoS2 thin films where the decreases in the intensity levels of E2g and A1g were observed without a shift in the peak. We believe that such a screening method can be a promising approach to recover the intrinsic electrical characteristics of MoS2 TFTs for nano-electronics with low power consumption.

Graphical Abstract

Keywords

Molybdenum disulphide Thin-film transistor Solution-processed fluorocarbon encapsulation Screening effect Impurity scattering 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIP) (NRF-2017R1A2B2003808).

References

  1. 1.
    Mele, D., Mehdhbi, S., Fadil, D., Wei, W., Ouerghi, A., Lepilliet, S., Happy, H., Pallecchi, E.: Graphene FETs based on high resolution nanoribbons for HF low power applications. Electron. Mater. Lett. 14, 133–138 (2018)CrossRefGoogle Scholar
  2. 2.
    Kim, J., Choi, E., Lee, I., Kim, D., Han, S., Pyo, S.G., Yoon, S.: Investigation of the charge storage behaviour of electrochemically activated graphene oxide on supercapacitor electrodes in acidic electrolyte. Electron. Mater. Lett. 13, 434–441 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201 (2005)CrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)CrossRefGoogle Scholar
  5. 5.
    Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011)CrossRefGoogle Scholar
  6. 6.
    Dean, C.R., Young, A.F., Cadden-zimansky, P., Wang, L., Ren, H., Watanabe, K., Taniguchi, T., Kim, P., Shepard, L.: Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7, 693 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, J., Ha, T.J., Li, H., Parrish, K.N., Holt, M., Dodabalapur, A., Ruoff, R.S., Akinwande, D.: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750 (2013)CrossRefGoogle Scholar
  8. 8.
    Mishra, M., Alwarappan, S., Kanjilal, D., Mohanty, T.: The effect of low energy nitrogen ion implantation on graphene nanosheets. Electron. Mater. Lett. 14, 488–498 (2018)CrossRefGoogle Scholar
  9. 9.
    Kim, D.S., Yoon, D.K.: Curvatures of smectic liquid crystals and their applications. J. Inf. Disp. 19, 7–23 (2018)CrossRefGoogle Scholar
  10. 10.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)CrossRefGoogle Scholar
  11. 11.
    Frey, G.L., Elani, S., Homyonfer, M., Feldman, Y., Tenne, R.: Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 57, 6666 (1998)CrossRefGoogle Scholar
  12. 12.
    Li, X., Yang, L., Si, M., Li, S., Huang, M., Ye, P., Wu, Y.: Performance potential and limit of MoS2 transistors. Adv. Mater. 27, 1547–1552 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, J., Yao, Q., Huang, C.W., Zou, X., Liao, L., Chen, S., Fan, Z., Zhang, K., Wu, W., Xiao, X., Jiang, C., Wu, W.W.: High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunnelling layer. Adv. Mater. 28, 8302–8308 (2016)CrossRefGoogle Scholar
  14. 14.
    Fuhrer, M.S., Hone, J.: Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146 (2013)CrossRefGoogle Scholar
  15. 15.
    Das, S., Chen, H.Y., Penumatcha, A.V., Appenzeller, J.: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)CrossRefGoogle Scholar
  16. 16.
    Kwon, J.H., Jeon, Y., Choi, S., Kim, H., Choi, K.C.: Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer. J. Inf. Disp. 19, 135–142 (2018)CrossRefGoogle Scholar
  17. 17.
    Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Sinclair, R., Wu, J.: Tuning interlayer coupling in large-area heterostructures with CVD-Grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, W., Huang, J.K., Chen, C.H., Chang, Y.H., Cheng, Y.J., Li, L.J.: High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25, 3456–3461 (2013)CrossRefGoogle Scholar
  19. 19.
    Eda, G., Yamaguchi, H., Voiry, D., Fugita, T., Chen, M., Chhowalla, M.: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)CrossRefGoogle Scholar
  20. 20.
    Ha, T.J., Lee, J., Chowdhury, S.F., Akinwande, D., Rossky, P.J., Dodabalapur, A.: Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer. ACS Appl. Mater. Interfaces. 5, 16–20 (2012)CrossRefGoogle Scholar
  21. 21.
    Buckley, G.S., Roland, C.M.: Network structure in poly(vinylidene fluoride-trifuloroethylene electrostrictive) films. Appl. Phys. Lett. 78, 622–624 (2001)CrossRefGoogle Scholar
  22. 22.
    Bao, W., Cai, X., Kim, D., Sridgara, K., Fuhrer, M.S.: High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Ye, J., Matsuhashi, Y., Iwasa, Y.: Ambipolar MoS2 Thin flake transistors. Nano Lett. 12, 1136–1140 (2012)CrossRefGoogle Scholar
  24. 24.
    Özçelik, V.C., Azadanni, J.G., Yang, C., Koester, S.J., Low, T.: Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016)CrossRefGoogle Scholar
  25. 25.
    Ha, T.J.: Hybrid graphene/fluoropolymer field-effect transistors with improved device performance. IEEE Trans. Electron Dev. 62, 4340–4344 (2015)CrossRefGoogle Scholar
  26. 26.
    Jeon, P.J., Min, S.W., Kim, J.S., Raza, S.R.A., Choi, K., Lee, H.S., Lee, Y.T., Hwang, D.K., Choi, H.J., Im, S.: Enhanced device performances of WSe2–MoS2 van der waals junction p–n diode by fluoropolymer encapsulation. J. Mater. Chem. C 3, 2751–2758 (2015)CrossRefGoogle Scholar
  27. 27.
    Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., Baillargeat, D.: From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)CrossRefGoogle Scholar
  28. 28.
    Kalb, W.L., Batlogg, B.: Calculating the trap density of states in organic field-effect transistors from experiment: a comparison of different methods. Phys. Rev. B 81, 035327 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea

Personalised recommendations