Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 314–322 | Cite as

Copper–Nickel Alloy Plating to Improve the Contact Resistivity of Metal Grid on Silicon Heterojunction Solar Cells

  • Sang Hee Lee
  • Doo Won Lee
  • Kyoung-jin Lim
  • Won-suk Shin
  • Jeong KimEmail author
Original Article - Electronics, Magnetics and Photonics
  • 20 Downloads

Abstract

As a dominant metallization technique of crystalline silicon solar cells, screen printing with silver paste has been generally used in photovoltaic industries. In case of the silicon heterojunction solar cells (SHJ) structure, a metal contact with silver paste has lower electrical conductivity than pure silver due to the other compositions of the paste. For the reason, copper plating is attractive substitute for the silver paste since the plated-copper contacts have high conductivity and easily reduce line width which is beneficial to light absorption. In this experiment, we studied copper–nickel (Cu–Ni) alloy plating to form a seed layer of the copper plating on an indium tin oxide (ITO) layer which is used for the transparent conductive oxide of the SHJ solar cells. As a requirement of suitable seed layer, contact resistivity (ρc) between the seed and the ITO is important to obtain high fill factor by decreasing series resistance of solar cells. Contact resistivity values of the samples with varied nickel contents in the Cu–Ni films were extracted by using transfer length method. Also, the composition ratio of the alloy layer was analyzed by energy dispersive spectrometer. Moreover, X-ray diffraction was used to compare lattice parameter and crystallite size of the film.

Graphical Abstract

Keywords

Silicon heterojunction solar cells Cu–Ni alloy plating Seed layer Contact resistivity Copper plating 

Notes

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010012940) and by the Ministry of Trade, Industry, and Energy, Korea Evaluation Institute of Industrial Technology (KEIT) (No. 10043793).

References

  1. 1.
    Heng, J.B., Fu, J., Kong, B., Chae, Y., Wang, W., Xie, Z., Reddy, A., Lam, K., Beitel, C., Liao, C.: > 23% High-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J. Photovolt 5(1), 82–86 (2015)CrossRefGoogle Scholar
  2. 2.
    Kleider, J.-P., Alvarez, J., Brézard-Oudot, A., Gueunier-Farret, M.-E., Maslova, O.: Revisiting the theory and usage of junction capacitance: application to high efficiency amorphous/crystalline silicon heterojunction solar cells. Sol. Energy Mater. Sol. C 135, 8–16 (2015)CrossRefGoogle Scholar
  3. 3.
    Mishima, T., Taguchi, M., Sakata, H., Maruyama, E.: Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol. C 95(1), 18–21 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, Q., Page, M., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H.-C., Duda, A., Hasoon, F.: Efficient heterojunction solar cells on p-type crystal silicon wafers. Appl. Phys. Lett. 96(1), 013507 (2010)CrossRefGoogle Scholar
  5. 5.
    De Wolf, S., Descoeudres, A., Holman, Z.C., Ballif, C.: High-efficiency silicon heterojunction solar cells: a review. Green 2(1), 7–24 (2012)Google Scholar
  6. 6.
    Adachi, D., Hernández, J.L., Yamamoto, K.: Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107(23), 233506 (2015)CrossRefGoogle Scholar
  7. 7.
    Yoshikawa, K., Yoshida, W., Irie, T., Kawasaki, H., Konishi, K., Ishibashi, H., Asatani, T., Adachi, D., Kanematsu, M., Uzu, H.: Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater Sol. C 173, 37–42 (2017)CrossRefGoogle Scholar
  8. 8.
    Fernandez, F.Z., Descoeudres, A., Choong, G., Bôle, P., Barraud, L., Wolf, S.d., Ballif, C.: Metallisation for silicon heterojunction solar cells. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1669–1672 (2010)Google Scholar
  9. 9.
    De Wolf, S., Kondo, M.: Boron-doped a-Si: H∕ c-Si interface passivation: degradation mechanism. Appl. Phys. Lett. 91(11), 112109 (2007)CrossRefGoogle Scholar
  10. 10.
    Papet, P., Hermans, J., Söderström, T., Cucinelli, M., Andreetta, L., Bätzner, D., Frammelsberger, W., Lachenal, D., Meixenberger, J., Legradic, B., Strahm, B., Wahli, G., Brok, W., Geissbühler, J., Tomasi, A., Ballif, C., Vetter, E., Leu, S.: Heterojunction solar cells with electroplated Ni/Cu front electrode. In: Proceedings of the 28th European Photovoltaic Solar Energy Conference, pp. 1976–1979 (2013)Google Scholar
  11. 11.
    Geissbühler, J., De Wolf, S., Faes, A., Badel, N., Jeangros, Q., Tomasi, A., Barraud, L., Descoeudres, A., Despeisse, M., Ballif, C.: Silicon heterojunction solar cells with copper-plated grid electrodes: status and comparison with silver thick-film techniques. IEEE J. Photovolt. 4(4), 1055–1062 (2014)CrossRefGoogle Scholar
  12. 12.
    Heng, J.B., Fu, J., Kong, B., Chae, Y., Wang, W., Xie, Z., Reddy, A., Lam, K., Beitel, C., Liao, C., Erben, C., Huang, Z., Xu, Z.: > 23.1% High efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. In: Proceedings of the 29th European Photovoltaic Solar Energy Conference, pp. 492–496 (2014)Google Scholar
  13. 13.
    Yu, J., Bian, J., Duan, W., Liu, Y., Shi, J., Meng, F., Liu, Z.: Tungsten doped indium oxide film: ready for bifacial copper metallization of silicon heterojunction solar cell. Sol. Energy Mater. Sol. C 144, 359–363 (2016)CrossRefGoogle Scholar
  14. 14.
    Munoz, D., Ozanne, F., Salvetat, T., Enjalbert, N., Fortin, G., Pihan, E., Jay, F., Jouini, A., Ribeyron, P.: Strategies of cost reduction and high performance on a-Si: H/c-Si heterojunction solar cells: 21% efficiency on monolike substrate. In: Proceedings of the 39th IEEE Photovoltaic Specialists Conference, pp. 3071–3073 (2013)Google Scholar
  15. 15.
    Khanna, A., Ritzau, K.-U., Kamp, M., Filipovic, A., Schmiga, C., Glatthaar, M., Aberle, A.G., Mueller, T.: Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells. Appl. Surf. Sci. 349, 880–886 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, Z., Hsiao, P.-C., Zhang, W., Chen, R., Yao, Y., Papet, P., Lennon, A.: Patterning for plated heterojunction cells. Energy Proced. 67, 76–83 (2015)CrossRefGoogle Scholar
  17. 17.
    Hernández, J.L., Adachi, D., Yoshikawa, K., Schroos, D., Assche, E.V., Feltrin, A., Valckx, N., Menou, N., Poortmans, J., Yoshimi, M., Uto, T., Uzu, H., Hino, M., Kawasaki, H., Kanematsu, M., Nakano, K., Mishima, R., Kuchiyama, T., Koizumi, G., Allebé, C., Terashita, T., Hiraishi, M., Nakanishi, N., Yamamoto, K.: High efficiency copper electroplated heterojunction solar cells. In: Proceeding of the 27th European Photovoltaic Solar Energy Conference, pp. 655–656 (2012)Google Scholar
  18. 18.
    Muñoz, D., Desrues, T., Ozanne, A.-S., Vecchi, S.d., Nicolàs, S.M.d., F. Jay, F.S., Nguyen, N., Denis, C., Arnal, C., d’Alonzo, G., Coignus, J., Favre, W., Blevin, T., Valla, A., Ozanne, F., Salvetat, T., Ribeyron, P.J.: Key aspects on development of high efficiency heterojunction and IBC-heterojunction solar cells: towards 22% efficiency on industrial size. In: Proceeding of the 27th European Photovoltaic Solar Energy Conference, pp. 576–579 (2012)Google Scholar
  19. 19.
    Aguilar, A., Herasimenka, S.Y., Karas, J., Jain, H., Lee, J., Munoz, K., Michaelson, L., Tyson, T., Dauksher, W.J., Bowden, S.: Development of Cu plating for silicon heterojunction solar cells. In: Proceedings of the 43rd Photovoltaic Specialists Conference, pp. 1972–1975 (2016)Google Scholar
  20. 20.
    Rodofili, A., Wolke, W., Kroely, L., Bivour, M., Cimiotti, G., Bartsch, J., Glatthaar, M., Nekarda, J.-F.: Laser-transferred Niv-seed for the metallization of silicon heterojunction solar cells by Cu-plating. In: Proceedings of the 33rd European Photovoltaic Solar Energy Conference, pp. 402–405 (2017)Google Scholar
  21. 21.
    Lee, S.H., Lee, D.W., Lee, S.H., Park, C.K., Lim, K.J., Shin, W.S.: Contact resistivity and adhesion of copper alloy seed layer for copper-plated silicon heterojunction solar cells. Jpn. J. Appl. Phys. 57(8S3), 08RB13 (2018)CrossRefGoogle Scholar
  22. 22.
    Lee, S.H., Lee, D.W., Kim, H.J., Lee, A.R., Lee, S.H., Lim, K.-J., Shin, W.-S.: Study of Cu-X alloy seed layer on ITO for copper-plated silicon heterojunction solar cells. Mater. Sci. Semicon. Proc. 87, 19–23 (2018)CrossRefGoogle Scholar
  23. 23.
    Lee, S.H., Lee, D.W., Lee, A.R., Kim, H.J., Lee, S.H.: Investigation of metal co-evaporated copper seed layers for copper-plated heterojunction solar cells. J. Korean Phys. Soc. 72(3), 469–475 (2018)CrossRefGoogle Scholar
  24. 24.
    Schroder, D.K., Meier, D.L.: Solar cell contact resistance—a review. IEEE Trans. Electron Dev. 31(5), 637–647 (1984)CrossRefGoogle Scholar
  25. 25.
    Varea, A., Pellicer, E., Pané, S., Nelson, B.J., Suriñach, S., Baró, M.D., Sort, J.: Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int. J. Electrochem. Sci. 7, 1288–1302 (2012)Google Scholar
  26. 26.
    Green, T., Russell, A., Roy, S.: The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys. J. Electrochem. Soc. 145(3), 875–881 (1998)CrossRefGoogle Scholar
  27. 27.
    Chassaing, E., Quang, K.V., Wiart, R.: Mechanism of copper–nickel alloy electrodeposition. J. Appl. Electrochem. 17(6), 1267–1280 (1987)CrossRefGoogle Scholar
  28. 28.
    Stout, L.E., Burch, O.G., Langsdorf, A.S.: Electrodeposition of copper–nickel alloys. Trans. Am. Electrochem. Soc. 57(1), 113–129 (1930)CrossRefGoogle Scholar
  29. 29.
    Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, New York (2006)Google Scholar
  30. 30.
    Holzwarth, U., Gibson, N.: The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534–534 (2011)CrossRefGoogle Scholar
  31. 31.
    Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161 (1991)CrossRefGoogle Scholar
  32. 32.
    Ghosh, S., Grover, A., Dey, G., Totlani, M.: Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf. Coat. Technol. 126(1), 48–63 (2000)CrossRefGoogle Scholar
  33. 33.
    Baskaran, I., Narayanan, T.S., Stephen, A.: Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties. Mater. Lett. 60(16), 1990–1995 (2006)CrossRefGoogle Scholar
  34. 34.
    Sinton, R., Cuevas, A.: A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Sang Hee Lee
    • 1
  • Doo Won Lee
    • 1
  • Kyoung-jin Lim
    • 2
  • Won-suk Shin
    • 2
  • Jeong Kim
    • 1
    Email author
  1. 1.Department of Electronics Engineering, Green Strategic Energy Research InstituteSejong UniversityGwangjin-GuKorea
  2. 2.Jusung EngineeringGwangju-SiKorea

Personalised recommendations